INTREPID: Developing Power Efficient Analog Coherent Interconnects to Transform Data Center Networks

Co-PI's: C. Schow (UCSB), K. Schmidtke (Facebook)

UCSB Faculty: J. Buckwalter, L. Coldren, J. Kaminski, A. Salih

Facebook: Hans-Juergen Schmidke, Ariel Hendel, Brian Taylor, Todd Hoffmann, Jimmy Williams, Gilad Goldfarb, James Stewart

ARPA-E: M. Harvey (Program Director), A. Liu, J. Zahler

Integration of Photonic Interfaces into Chip Packages

Conventional Packaging:
- Low integration level limits performance and efficiency

INTREPID: Energy-efficient coherent links for the datacenter
- Replace power-hungry electrical I/O with highly-efficient photonics and use the power saved to expand switch radix

Analog Coherent WDM links
- Expanded link budgets enable photonic routing/switching
- Low power: no/very little DSP
- Target: 800Gb/s/fiber = 4x@200Gb/s/λ (dual-pol QPSK, 50 Gbaud/s)

Multimode VCSEL links
- Server connections (30m)
- SOG → 100G

Analog Coherent Links: Maximizing Energy Efficiency

Direct Detection
- Detected power \(\propto (P_{\text{in}} \cdot A_{\text{det}}) \)
- \(P_{\text{in}} \): laser power, \(A_{\text{det}} \): total link attenuation
- RX sensitivity sets energy efficiency
- Sensitivity degrades with datarate
- Shrinking link budgets

Coherent Detection
- Detected power \(\propto (P_{\text{in}} \cdot A_{\text{det}}) \cdot P_{\text{LO}} \)
- \(P_{\text{LO}} \): Local Oscillator (LO) power
- ~20dB improvement in RX sensitivity
- Ability to compensate for insertion loss of optical routing/switching devices

Optical Phase Locked Loop (OPLL) → Eliminating Power-Hungry DSP

OPLL locks phase and frequency of local oscillator allowing reception at low bit error-rate (BER) without forward error correction (FEC)

Integration And Scalability

Table:

<table>
<thead>
<tr>
<th>Switch ASIC</th>
<th>Integrated Photonic I/O</th>
<th>INTREPID Coherent Integration</th>
<th>25.6 Tb/s Switching Chip</th>
<th>L-Level Folded Clos</th>
<th>Adding One AWGR Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit Rate per Integrated Port or per Fiber (Gb/s)</td>
<td>Chip Ports per Integrated Port</td>
<td>Number of Integrated Ports (RADIX)</td>
<td>Number of 50G Servers</td>
<td>2 (R/ρ) (N/2)</td>
<td>8 of 50G Servers</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>100</td>
<td>2</td>
<td>256</td>
<td>65,536</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>200</td>
<td>4</td>
<td>128</td>
<td>10,384</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>400</td>
<td>8</td>
<td>64</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>800</td>
<td>16</td>
<td>32</td>
<td>4,096</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>1,000</td>
<td>32</td>
<td>16</td>
<td>52,428</td>
</tr>
</tbody>
</table>

INTREPID Integration Target:
- \(R = 4 \) to \(8 \)
- \(r = 200 \) Gb/s per \(\lambda \)
- \(R = 800 \) to 1,600 Gb/s per Fiber

Same number of servers with current technology

Future: Optical-switch-based architecture

- Disaggregation
- Configurability to match workload
- High utilization
- Improved energy efficiency

Note: The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000717. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.