High-efficient cooling for cloud computing system by refrigerant drip-feeding

Kazuhiro Matsuda and Morito Matsuoka
Cybermedia Center, Osaka University / EEC Research Institute
1-32 Machikane-yama, Toyonaka, Osaka, 560-0043 Japan
kazuhiro.matsuda@ane.cmc.osaka-u.ac.jp matsuoka@cmc.osaka-u.ac.jp

Abstract — We developed a sophisticated drip-feeding cooling system that efficiently cools high thermal density servers using multiprocessor implementation of CPUs or general-purpose computing on graphics processing units (GPUs) for high-performance computing such as machine learning. Fluorine inert liquid and Silicone oil were used as refrigerants. The refrigerant is pumped from the lower refrigerant reservoir up to the upper refrigerant reservoir, and refrigerant drip-feeding is demonstrated from the reservoir by natural fall onto the CPU (or GPU) board. This system achieves cooling heat by around 15 kW per rack at a power usage efficiency below 1.02. By comparing to the conventional immersion system, total power consumption is reduced, and also the floor loading is significantly reduced below 500kg/m². By using newly developed compact UPS, pump for lifting refrigerant up to the reservoir keeps working for around 90 min even in case of power failure. As a result, such high performance system can be placed even on an office floor.

SUMMARY
1. We developed a high-efficient drip-feeding cooling system for cloud computing system. In this system, HPCs and GPUs with high heat density are cooled with high efficiency.
2. The weight of the system can be greatly reduced compared with the conventional bathtub-type immersion-cooling system.
3. The targeted cooling performance of 15 kW per rack and PUE of below 1.02 were demonstrated. Also, by using compact UPS, pump for lifting refrigerant up to the reservoir keeps working for around 90 min even in case of power failure.
4. As a result, the developed drip-feeding cooling system exhibits promising potential for being applied to high heat-generation server systems in offices, laboratories, and data center, of course.

ACKNOWLEDGEMENT
This study was supported by the Ministry of Environment in Japan. The drip-feeding system is operated by NTT-East Corporation. The heat exchange system for cooling water was developed by Takasago Thermal Engineering Co., Ltd. The perfluorocarbon structured refrigerants (Fluorinert) were provided by the 3M Company.

REFERENCES