Using SmartNICs to Reduce Server Latency

Nic Viljoen, Director-Software Engineering, Netronome
nick.viljoen@netronome.com
• Intro
 • Netronome and OCP
 • What’s a SmartNIC?
• Why is Latency a problem?
• How can SmartNICs Help?
 • Single-Host
 • Multi-Host
• Summary
Netronome and OCP

- First 25/50G SmartNIC on OCP Mezz v2
 - Fully programmable-72 cores, 8 threads per core
- 15-25W (Depending on use case)
- Contributing to OCP Mezz v3
 - Jack Dawson
 - john.dawson@netronome.com
SoC Architecture

High Performance Interconnect – DSF
Modular Island based architecture
Scalable with process node
Capability to add/remove islands based on customer requirements
Low latency deterministic paths between islands
Transactional Memory Architecture

Latency hidden by co-operative multi-threading
1. Why is Latency a Problem?
Lossy networks need all the help they can get

• Focus of this talk is TCP (and a small bit of UDP)-nothing fancy

• Latency affects
 • Throughput
 • Remote procedure call reliability
 • Network hygiene

• Simple but useful tool
 • https://wand.net.nz/~perry/max_download.php
Window size, losses and latency (TCP 101)

• Going from 1ms to 0.05ms increases throughput by about ~20x
 ▶ Window size - why does it really matter?

• Any losses will accentuate this

• Reducing latency increases robustness
Remote Procedure calls

- Web users leave websites if interactions have too much latency
- This is decreasing with the advent of VR/AR
- Tail latency is key
 - 1/100 workers exceeds P99 latency budget for process
2. How Can SmartNICs Help?
Processing on the NIC

• Processing certain types of packets on the NIC significantly reduces latency

• **Want to be able to run own applications**

• Don’t want to leave upstream (Linux)

• How can custom datapath offload be achieved while staying within upstream?
 • eBPF
eBPF

- Small kernel-based virtual machine
 - 10 64-bit registers
 - 512 byte stack
 - Max 4k RISC bytecode instructions
 - Infinite size key-value stores (maps)
- BPF has a verifier to ensure programs do not contain non-permitted state
- Helpers do essential work outside of BPF (e.g. map lookups, header extend)
eBPF Offload

• What is eBPF?
 • Small kernel-based virtual machine
 • Compiled from C/Go/Rust/P4 by LLVM
 • Verified and JITed by kernel

• Why eBPF?
 • Emerging technology in kernel
 • Used by Facebook, Cloudflare, many others
 • BPFFilter is key new firewall method

• eBPF Offload
 • Transparently offload XDP and cls_bpf (TC)
 • Means NFP can immediately offload new kernel innovations

Note: Netronome not affected by Spectre/Meltdown bugs
Ping Latency Example

Compare RTT - Remember the graph on slide 10

Background IPerf

BPF.o

NIC

Server

DRV and PING done with multiple NICs
Ping Latency Example

- XDP OFFLOAD
- XDP DRV
- PING

RTT Latency (ns)
Ping Latency + Filter (Multi-host)

There are other methods to reduce MH latency with a SmartNIC. Some are much more general.

BPF program filters out most non-ping traffic and load balances it to other servers.

Compare RTT - Remember the graph on slide 10.

PCIe Limited to x4/x2-can cause drops.
Latency (Multi-host)

![Graph showing RTT Latency (ns) for XDPOFFLOAD FILTER and XDPDRV FILTER.]
Summary-How does this help ocp?

• The crossing point between HW and software is hard
• But the rewards can be very interesting
• How can NIC level programmability become more tightly entwined with OCP?
Load Balancer Throughput

Sample Load Balancer

NFP can viably offload applications in XDP-and lots of performance headroom

- XDPOFFLOAD (1 Core) Optimized Maps
- XDPOFFLOAD (1 Core)
- XDPDRV
- XDPDRV/Core

Performance (Mpps)

8 Cores DRV