OPEN. FOR BUSINESS.
SAS / SATA / NVMe Storage

Rackspace Barreleye G2 48V OpenPOWER Platform

Adi Gangidi
Sr. Systems Design Engineer, Rackspace
Agenda

- Introduction
- What is tri-mode?
- Why tri-mode?
- Implementation
 - Details & Alternatives
- Samples
Zaius & Barreleye G2

Capabilities

ZAIUS Motherboard
- 2 x POWER9 LaGrange
- 48V input
- Front IO & service access
- 80 Lanes of PCIe Gen4
- 32 Lanes of OpenCAPI / NVLink 2.0
- Open Source BMC & Host Firmware

BARRELEYE G2 Chassis
- Full-depth 48V open rack v2
- Hot swap fans and VGA access
- 2 OU chassis supports FHFL cards
- High density & hot swap storage bay
- Tri-mode Support (SAS / SATA / NVMe)
Storage Today & Past

• Separate connector pinout / backplane

• Separate mid-plane

• Separate controller
Tri-Mode Storage:

- Interchangeable SAS / SATA / NVMe Support in the SAME slot
- Hot-swap between different devices (Where firmware support is available)
- 1 Backplane
- 1 Mid-plane / Expander board
- 1 Controllers
Why Tri-mode?

• Mixed market forecast

• Bare metal as service
 • Avoid Reconfiguration
 • Hardware RAID
 • Hot-swap support

• Rackspace Perspective
 • Complex infrastructure
 • Increasingly mixed deployments (HCI)
 • Price Volatility

Percentage of Total Enterprise SSD consumption
Forecast based on number of units

<table>
<thead>
<tr>
<th></th>
<th>SATA</th>
<th>SAS</th>
<th>NVMe</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>61%</td>
<td>18%</td>
<td>20%</td>
</tr>
<tr>
<td>2018</td>
<td>55%</td>
<td>21%</td>
<td>23%</td>
</tr>
<tr>
<td>2019</td>
<td>52%</td>
<td>21%</td>
<td>27%</td>
</tr>
<tr>
<td>2020</td>
<td>48%</td>
<td>22%</td>
<td>30%</td>
</tr>
<tr>
<td>2021</td>
<td>42%</td>
<td>24%</td>
<td>34%</td>
</tr>
</tbody>
</table>

Source: BCM DCSG Normalized based on IDC, Trend Focus
Barreleye G2 Storage

Tri-mode

- 24 Drives
- SAS / SATA / NVMe
- NVMe Hardware RAID
- Tri-mode Hot-Swap
Tri-mode Storage

Demo 1

Hot-Swap SATA with NVMe
Tri-mode Storage

Demo 2
Building hardware RAID on NVMe with Broadcom 9460-16i

SATA HW RAID

NVMe RAID
Ideal Tri-mode Storage Reference Architecture

- **Tri-mode RAID Controller / HBA**
- **Tri-mode Expander**
- **96 HIGH SPEED LANES IN DRIVE BACK PLANE**
- **24 “U.3” SAS / SATA / NVMe Drive Slots**
- **Drive Back-Plane**

Details:
- X8 PCIe Gen4
- X16 PCIe Gen4
- X8 SAS [7:0]
- X8 PCIe
- X8 PHY

STORAGE EXPANDER BOARD
Tri-Mode Storage:

Requirements of Specification / Samples

- One Backplane
 - One connector
 - Less high-speed lanes to backplane

- One Mid-plane
 - Tri-mode Expander

- One HBA / RAID Controller

SAS
SATA
NVMe
Tri-Mode Storage:
Requirements of Specification / Samples

- One Backplane
 - Single connector
- Less high-speed lanes to backplane
- Drives should change form-factor
Tri-Mode Storage:
Requirements of Specification / Samples

One Mid-plane Solution
• Tri-mode Expander
Tri-Mode Storage:
Requirements of Specification / Samples

- One HBA / RAID Controller

X8 SAS [7:0]
X8 PCIe
X8 PCIe

Tri-mode RAID Controller

X8
PCIe Gen4
X16
PCIe Gen4
Double Plumb U.2

Single lane SAS / SATA , Dual lane NVMe
Barreleye G2 Tri-mode Storage
Actual Implementation

80 HIGH SPEED LANES IN DRIVE BACK PLANE

BCM 9465-16i/CAPI 2.0 / HBA

X8 PCIe Gen4
X16 PCIe Gen4

MiniSAS Conn

SAS 35X48
PEX 9797

STORAGE EXPANDER BOARD

SlimSAS Conn

8x4 NVMe & 12x2 NVMe (U.2)

SEP

x1 SAS / SATA wired to 24 Drives (U.2)

CPLD

I2C
SGPIO
From SEB
From SEB

X8 PHY
X8 PHY [7:0]
X8 PHY [15:8]
X8 PHY [23:16]
Barreleye G2 Tri-mode Storage

Actual Implementation: PCIe Gen3 U.2 Backplane
Barreleye G2 Tri-mode Storage
Using Separate Controllers for SAS / SATA and NVMe
Barreleye G2 Tri-mode Storage
Using Tri-mode Controller for SAS / SATA and NVMe
Barreleye G2 Tri-mode Storage
Using Separate Controllers for SAS / SATA and NVMe
Specification Update
Universal Backplane Implementation Guidance

- SFF-TA-1001 (U.3): Common drive bay definition
 - Specification ratified October 2017
 - Defines a universal backplane definition for SAS, SATA, and NVMe drives
 - Simplifies multi-protocol backplane design and lowers cost
 - U.3 Drives backwards compatible to U.2 bays

- SFF-TA-1005 (UBM): Universal Backplane Management
 - Backplane management framework
 - LEDs and much more
 - Unifies capabilities of various backplane management schemes
 - SGPIO (SFF-8485), 2Wire SES, and I2C PCA9555
 - Provides a method to manage and control SAS/SATA/NVMe backplanes
 - Resolves x2 and x1 NVMe drive support challenges
Tri-mode Storage Enhancements
PCle Gen3 U.2 Universal Backplane
Possible Adoption & Upgrades

Adopting PCle Gen3 U.2 Tri-mode Backplane
• SATA support by adding 1 or 2 lanes per U.2 NVMe connector

Upgrading to PCle Gen4 U.3 Tri-mode Backplane
• Amphenol
• PCle Gen4 NVMe (16 GT/s)
• SAS 4.0 (22.5GT/s)
• Tri-mode expander
• U.3 Connectors
Design Package

Available on OCP Server Wiki and GitHub

Enhancements Coming Throughout 2018

GitHub
https://github.com/opencomputeproject/zaius-barreleye-g2 (don’t forget to install Git LFS)

OCP
http://www.opencompute.org/wiki/Server/Working#Open_Rack
THANK YOU
Archive Material
U.3 vs U.2
PCIe Gen3 U.2 Universal Backplane
Possible Adoption & Upgrades

FIGURE 3-1 PORT USAGE OVERVIEW