

Wedge 400 Design Specification V0.3

Author:

Lingjun Wu, Hardware Engineer, Meta

Table of Contents

1. Lic	cense	5
1.1	1 Open Web Foundation (OWF) CLA	5
1.2	2 Acknowledgements	5
2. 00	CP Tenets Compliance	6
2.1	1 Openness	6
2.2	2 Efficiency	6
2.3	3 Impact	6
2.4	4 Scale	7
3. Re	evision Table	8
4. Int	troduction	9
4.1	1. Scope	9
4.2	2. System Description	9
4.3	3. Common Terms	10
5. Sy	stem Architecture	11
5.1	1. System Architecture	11
5.2	2. Chassis Design	12
5.3	3. Data Plane	14
į	5.3.1. Switch Element	15
į	5.3.2. Switch ASIC Port-mapping	15
5.4	4. Control Plane	15
į	5.4.1. Clock Tree	16
į	5.4.2. PCIe Assignments	17
5.5	5. Chassis management Plane	18
į	5.5.1. BSM (BMC Storage Module)	18
į	5.5.2. UART Connection	22
į	5.5.3. OOB Switch	23
į	5.5.4. RackMon Interface	23
5.6	6. System Powerup Sequence	24
5.7	7. Switch Main Board (SMB)	25
į	5.7.1. Block Diagram of SMB	25
į	5.7.2. BMC I2C diagram	26

Open Compute Project • Wedge 400 Design Specification	
5.7.3. BMC I2C mapping	26
5.7.4. BMC SPI diagram	29
5.7.5. PWR_CPLD Registers	29
5.7.6. SMB sys_CPLD Registers	32
5.8. System Control Module (SCM)	48
5.8.1. System Control Module Block Diagram	48
5.8.2. 10G KR interface	49
5.8.3. SCM LPC bus	50
5.8.4. COM-Express CPU Module	50
5.8.5. SCM Sys_CPLD Registers	51
5.9. Fan Control Module(FCM) and Fan-tray	58
5.9.1. Fan_CPLD Registers	59
5.9.2. Fan Control Mechanism	60
5.10. LED	69
5.10.1. LED Controlling	69
5.10.2. System Information LED (SIM)	70
5.10.3. Management OOB port LEDs	72
5.10.4. QSFP Port LEDs	73
5.10.4.1. Background of Adding LED button	74
5.10.4.2. LED button	74
6. Modules Interfaces	75
6.1. Interfaces between SCM and SMB	75
6.2. Interfaces between FMC and SMB	75
6.3. Interfaces between PDB and SMB	76
6.4. Interfaces between Rackmon board and SMB	76
6.5. Interfaces between Timing board and SMB	76
7. Transceivers and cables	77
8. Wedge400 Power and Mechanical	78
8.1. DC/DC Power Extension Module (PEM)	78
8.2. AC/DC PSU	79
8.3. Power Circuits Design Target	82
8.4. Power Tree	83

Open Compute Project • Wedge 400 Design Specification	
6.5. Voltage Detection Sensors	85
6.6. Current Detection Sensors	86
9. Thermal design	88
9.1. Fan tray	88
9.2. Temperature Sensors	90
10. Regulatory Compliance Requirements	91
10.1. CE Declaration to the following Regulatory Directives by ODMs	91
10.2. Safety Certification	91
10.3. EMC Certification	91
10.4. Immunity Levels	92
10.5. Sound	92
10.6. Environmental Compliance	93
11. Labels and Markings	94
11.1. PCBA Labels and Markings	94
11.2. Chassis Labels and Markings	94
12. References (OPTIONAL)	95
13. References (OPTIONAL)	96
Appendix A - Requirements for IC Approval	96
Appendix B $_$ - OCP Supplier Information (to be provided by the Supplier of Product within 12 days)	20 97

1. License

1.1 Open Web Foundation (OWF) CLA

Contributions to this Specification are made under the terms and conditions set forth in Open Web Foundation Contributor License Agreement ("OWF CLA 1.0") ("Contribution License") by: **Meta Platforms, Inc.**

You can review the applicable Specification License(s) executed by the above referenced contributors to this Specification on the OCP website at http://www.opencompute.org/participate/legal-documents/
Notes:

- 1) The following clarifications, which distinguish technology licensed in the Contribution License and/or Specification License from those technologies merely referenced (but not licensed), were accepted by the Incubation Committee of the OCP: None
- 2) The above license does not apply to the Appendix or Appendices. The information in the Appendix or Appendices is for reference only and non-normative in nature.

NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED BY OCP "AS IS" AND OCP EXPRESSLY DISCLAIMS ANY WARRANTIES (EXPRESS, IMPLIED, OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO THE SPECIFICATION. NOTICE IS HEREBY GIVEN, THAT OTHER RIGHTS NOT GRANTED AS SET FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD PARTIES WHO DID NOT EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE IMPLEMENTATION OF OR COMPLIANCE WITH THIS SPECIFICATION. OCP IS NOT RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE REQUIRED. IN ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK AS TO IMPLEMENTING OR OTHERWISE USING THE SPECIFICATION IS ASSUMED BY YOU. IN NO EVENT WILL OCP BE LIABLE TO YOU FOR ANY MONETARY DAMAGES WITH RESPECT TO ANY CLAIMS RELATED TO, OR ARISING OUT OF YOUR USE OF THIS SPECIFICATION, INCLUDING BUT NOT LIMITED TO ANY LIABILITY FOR LOST PROFITS OR ANY CONSEQUENTIAL. INCIDENTAL. INDIRECT. SPECIAL OR PUNITIVE DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.2 Acknowledgements

The Contributors of this Specification would like to acknowledge the following companies for their feedback: List all companies or individuals who may have assisted you with the specification by providing feedback and suggestions but did not provide any IP.

2. OCP Tenets Compliance

Note: The ideals behind open sourcing stipulate that everyone benefits when we share and work together. Any open source project is designed to promote sharing of design elements with peers and to help them understand and adopt those contributions. There is no purpose in sharing if all parties aren't aligned with that philosophy. The IC will look beyond the contribution for evidence that the contributor is aligned with this philosophy. The contributor actions, past and present, are evidence of alignment and conviction to all the tenets.

2.1 Openness

The measure of openness is the ability of a third party to build, modify, or personalize the device or platform from the contribution. OCP strives to achieve completely open platforms, inclusive of all programmable devices, firmware, software, and all mechanical and electrical design elements. Any software utilities necessary to modify or use design contributions should also be open sourced. Barriers to achieving this goal should be constantly addressed and actions taken to remove anything that prevents an open platform. Openness can also be demonstrated through collaboration and willingness to share, seek feedback, and accept changes to design and specification contributions under consideration.

W400: The electrical design and mechanical design of W400 is fully open, and all the PCB and chassis design files have been included in the design package.

2.2 Efficiency

Continuous improvement has been a fundamental value of the industry. New contributions (and updates to existing contributions) shall be more efficient than existing or prior generation contributions. Efficiency can be measured in many ways - OpEx and CapEx reduction, performance, capacity, power or water consumption, raw materials, utilization, size or floorspace are some examples. The goal is to express efficiency with clear metrics, valued by end-users, when the contribution is proposed.

W400: The system comes in a 2RU form factor, slightly larger than W100S, its 32 x 100G predecessor, while quadrupling the switching throughput both in terms of bandwidth and packets per second. The SCM is FRU-able in W400, which increases the efficiency in fleet maintenance.

2.3 Impact

OCP contributions should have a transformative impact on the industry. This impact can come from introducing new technology, time-to-market advantage of technology, and/or enabling technology through supply chains that deliver to many customers in many regions of the world. New technologies are impactful when such technology is enabled through a global supply channel. (W400 Switch System Generic Specification http://opencompute.org) One example is the NIC 3.0 specification which achieved global impact by having over 12 companies author, adopt, and supply products that conformed to the specification. Another example is emerging and open security features that establish and verify trust of a product. W400 leverages the latest generation of switch ASIC, utilizes the 50G PAM4 SerDes technology at scale, and achieves efficiency gains outlined above.

2.4 Scale

OCP contributions must have sufficient enabling, distribution and sales support (pre and post) to scale to Fortune 100 as well as large hyperscale customers. Demonstration of this tenet can be accomplished by providing sales data or by providing go-to-market plans that involve either platform/component providers or systems integrator/VAR (direct and/or channel). Platform/component providers or systems integrators/VARs that can use this contribution to obtain product recognition (OCP Accepted™ or OCP Inspired™) and create Integrated Solutions which would also demonstrate scale. Software projects can also demonstrate this tenet when software is adopted across business segments or geographies, when software is a key factor in accelerating new technology, or when software provides scale of new hardware which meets OCP tenets.

W400: It is designed with FRU-able switch control module (microserver), fan, and PSU for easy field maintenance. There are multiple hardware sensors built-in, and OpenBMC has necessary utilities for hardware monitoring. It has been and will continue to be deployed as a top of rack switch in large quantities.

3. Revision Table

Date	Revision #	Author	Description
8/1/2020	V0.1	Lingjun Wu	Initialized the draft version.
2/1/2022	V0.2	Lingjun Wu	Added license and tenets sections. Added the link of supplier info.
2/16/2022	V0.3	Lingjun Wu	Fixed the editing issue for the tenet chapter according to OCP review feedbacks.

4. Introduction

4.1. Scope

The purpose of this document is to provide a system description of the Meta Wedge400 platform.

This document also introduces Wedge400's software accessible interfaces, and required software actions to properly manage the hardware at the system level.

4.2. System Description

Wedge400 is Meta's new generation Top of Rack switch. It can be used as rack (OpenRack v2) switch of data center network of Meta.

The main attributes are:

- Box Size
 - o 87.5mm(H) x 440mm(W) x 558.8 mm(D)
- Traffic Ports
 - o 16 x QSFP-DD: 400G/200G/100G ports
 - 32 x QSFP56: 200GE/100GE ports or 2*50GE/4*25GE/4*10GE breakout ports
- Management Ports
 - one RJ45 as RS232 console port to BMC.
 - One RJ45 as OOB GE management port, it supports 1000M/100M/10M Base-T.
 - USB 2.0 compatible, supports OCP debug card.
 - o Rackmon: 3 x RJ45 as RS485 ports, 1 x RJ45 as GPIO.
- Switch Main Board (SMB)
 - Switch Main Board has Switch ASIC, BMC, and front panel ports.
 - Data plane:
 - Switching ASIC: Broadcom's BCM56980 a.k.a. Tomahawk 3, 12.8Tbps, 256*50G PAM4 SERDES.
 - Management Plane:
 - BMC: Aspeed AST2520
 - Located on SMB board
 - UART mux for supporting sol.sh
 - I2C system management bus
 - JTAG controller for programming CPLDs
 - 128MB flashes and 8G eMMC for BMC, located on SCM, a.k.a. BMC Storage Module (BSM).
 - GbE Switch: for all COM-e, BMC, and front RJ45 OOB port (one of the SGMII interfaces reserved to Rackmon connector for future use to replace the GPIO port)
- System Controller Module (SCM)

- Minilake, developed for Meta, as industrial standard COM-Express CPU module, Type 7.
- SCM is pluggable on rear side.
- One M.2 SSD slot:
 - NMVe PCle 3.0 x4;
- One M.2 BSM slot:
 - BMC Storage Module, it includes 2 flashes and 1 eMMC;
- Power Plane
 - o AC/DC modules or DC/DC (PEM) modules;
 - AC/DC PSU 1+1:
 - 90Vac to 305Vac input
 - DC/DC PEM for single 12V inputs:
 - Hot-swap / slow powerup controller
 - 3.3V Standby (always on) @0.5A; ORing/LDO on 3.3V;
 - PSU_ON signal to enable/disable 12V output;
 - Top of Rack installation will go with one DC/DC PEM module (There is NO dual 12V inputs supporting);
- Fan System
 - Four 80mm x 80mm x 80mm counter-rotating fan-trays, which shares the same part from Meta Minipack/Backpack systems;

4.3. Common Terms

The following terms are used in Wedge400 project:

- 100GE 100 Gigabit Ethernet
- 200GE 200 Gigabit Ethernet
- 400GE 400 Gigabit Ethernet
- SMB Switch Main Board
- SCM System Controller Module
- FCM Fan Controller Module
- PDB –Power Distribution board
 - o PDB-T Power Distribution board, this is for top PSU/PEM plugged in.
 - PDB-B Power Distribution board, this is for bottom PSU/PEM plugged in.
- COM-E COM-Express CPU module
- PSU Power Supply Unit
- PEM Power Extension Module
- QSFP28 –Quad Small Form-factor Pluggable (QSFP) at 4 x 28Gbps, used for 100GBE
- QSFP56 –Quad Small Form-factor Pluggable (QSFP) at 4 x 56Gbps, used for 200GBE
- QSFP-DD –Quad Small Form-factor Pluggable Double Density at 8 x 56Gbps, used for 400GBE
- BMC -- Baseboard Management Controller
- BSM -- BMC Storage Module
- Rackmon Rack Monitor Interface

5. System Architecture

5.1. System Architecture

Wedge400 is a single switch ASIC modular system, it only has one 12.8T switch ASIC, one System Control Module (SCM) and one BMC. It has four 80mm x 80mm x 80mm CR fan trays to cool the system. The following picture shows the system diagram of Wedge400 switch:

Figure 1:System architecture of Wedge400

The System Control Module (SCM) carries one COM-e Broadwell-DE CPU module, and can be plugged into the chassis from rear side. The Broadwell-DE CPU module provides the control function of Wedge400.

Switch Main Board (SMB) is fixed to the chassis, it consists of switch ASIC, BMC system, and connectors to SCM. The switch ASIC is controlled by Broadwell-DE CPU of SCM through PCIe Gen3 interface.

5.2. Chassis Design

Wedge400 is standard 19" wide, 2-RU height modular switch.

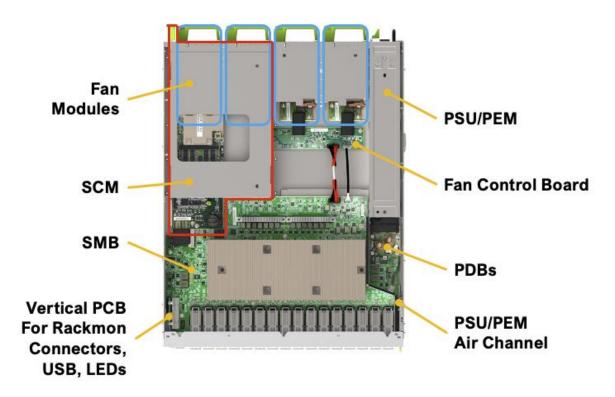


Figure 2:Wedge400 Chassis top View

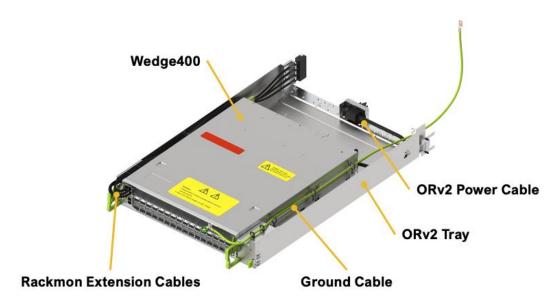


Figure 3: Wedge400 with ORv2 Tray

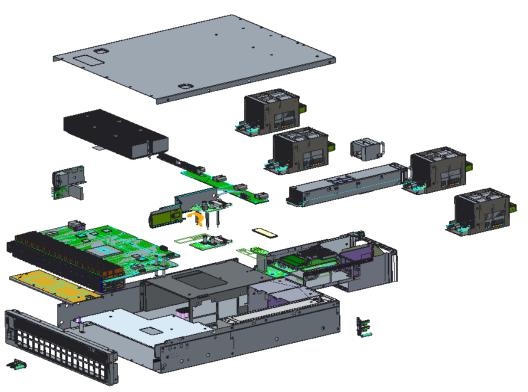


Figure 4: Wedge400 explosion overview

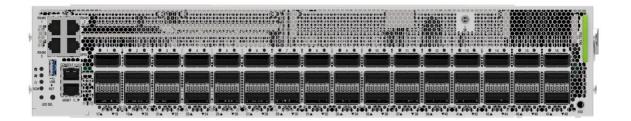


Figure 5:Wedge400 Front View

Figure 6:Wedge400 Rear View

5.3. Data Plane

Wedge400 has 12.8T switch ASIC as the main data plane chip. The switch ASIC supports 32 \times 400G port configuration, or 64 \times 200G port configuration, or 128 \times 100G port configuration.

5.3.1. Switch Element

Wedge400 uses the Meta unique switch element to form the fabric. One switch element has one BMC, one CPU module and one switch ASIC. This unique switch element architecture makes our data center network disaggregated, easily managed and easy to scale.

Wedge400 is one switch element which can support $16 \times 400/200/100G + 32 \times 200/100G$. It's designed to be used as the Top of Rack switch for ORv2 in Meta data centers.

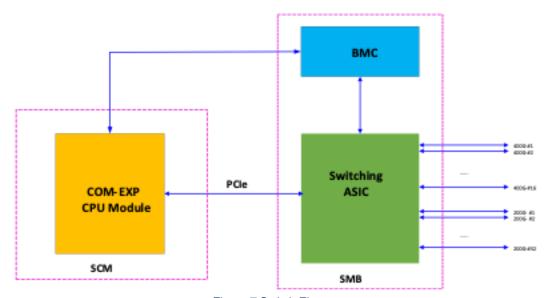


Figure 7:Switch Element

5.3.2. Switch ASIC Port-mapping

There are 16 QSFP-DD ports and 32 QSFP56 ports on Wedge400. The front panel placement is shown as below.

QDD_P1	QDD_P2	QDD_P3	QDD_P4	QDD_P5	QDD_P6	QDD_P7	QDD_P8	QDD_P9	QDD_P10	QDD_P11	QDD_P12	QDD_P13	QDD_P14	QDD_P15	QDD_P16
Q56_P17	Q56_P19	Q56_P21	Q56_P23	Q56_P25	Q56_P27	Q56_P29	Q56_P31	Q56_P33	Q56_P35	Q56_P37	Q56_P39	Q56_P41	Q56_P43	Q56_P45	Q56_P47
Q56 P18	Q56 P20	Q56 P22	Q56 P24	Q56 P26	Q56 P28	Q56 P30	Q56 P32	Q56 P34	Q56 P36	Q56 P38	Q56 P40	Q56 P42	Q56 P44	Q56 P46	Q56 P48

Figure 8:Wedge400 Faceplate Port Numbering

5.4. Control Plane

Main control plane features are listed below:

- COM-Express BW-DE CPU module
 - 8mm mating distance.
 - Implemented on SCM
- BMC as management entity to control Switch ASIC and COM-E CPU module
 - Enable/disable power of switch ASIC or COM-e
 - OOB ethernet to front port
 - Console port to front port

- SMB bus and I2C bus to SCM COM-E CPU module
- Front panel management and debug interface
- Meta 2nd generation debug connector
- PCle Interface
- Switch ASIC: PCle x4 gen3
- 2 pcs of DOM FPGAs: PCle x 1/2 gen1/2
- NVMe: PCle x4 gen3
- PCIe clock is from COM-E module
- LPC bus
- SCM COMe LPC bus control the following device
- BMC on SMB
- OOB Ethernet (BCM5389)
- 8-port OOB switch on SMB
- BMC GBE ethernet interface
- BMC RGMII interface
- SCM COM-E ethernet interface
- Switch ASIC management GBE port(SGMII)
- Front RJ45 OOB ethernet interface
- Two ports reserved for RackMon
- USB
- COM-E is root-complex port
- 3-port USB hub on SMB
- BMC USB slave port
- Meta OCP debug USB from the USB HUB

5.4.1. Clock Tree

The following diagram shows the clock design in the system:

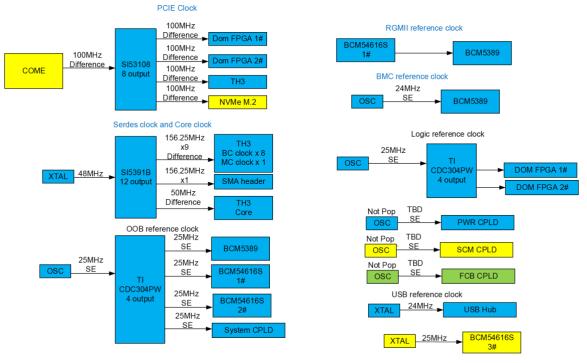
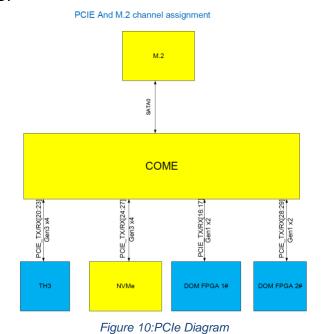



Figure 9:Clock Tree

5.4.2. PCIe Assignments

The following diagram shows the PCle port assignments from Broadwell-DE to TH3, DOM FPGAs and NVMe SSD.

Date: 2/16, 2022 Page 17

5.5. Chassis management Plane

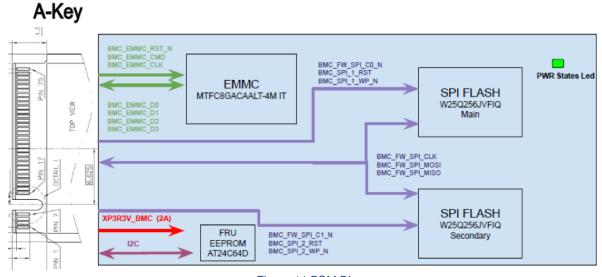
BMC on SMB works as the chassis management module, Chassis management bus is I2C, and the management bus can access the following modules/components:

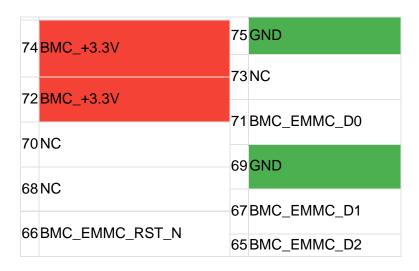
- System Management Module (SCM)
- FCM/FAN
- PSU/PEM
- Temperature sensors and power monitoring.

5.5.1. BSM (BMC Storage Module)

The BSM module was introduced to support META security requirement. It contains NOR flashes (primary and secondary) and eMMC on a daughter card for easily removing and shredding by ERAD team when the unit goes through RMA. This daughter card is based on M.2 form factor and connector. Here is the diagram of BSM module:

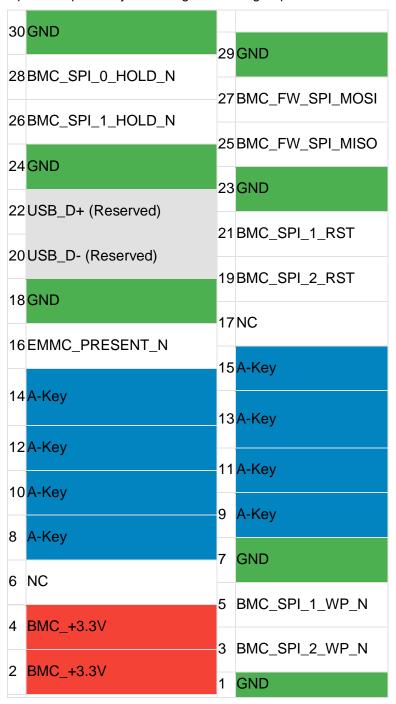
M.2 Type A key 2260 H=8.5mm




Figure 11:BSM Diagram

The components are all placed on top side to simplify the manufacturing process. Based on the placement, 2260 formfactor is selected. The I2C interface is routed to the M.2 connector on SCM. An EEPROM is used for FRU info, located on M.2 card, accessible from BMC.

Figure 12:BSM PCB Design


Pinout definition (Based on A-key): Table 1:M.2 Pin Definition

Open Compute Project • Wedge 400 Design Specification

64	NC	00	OND
62	NC	63	GND
60	NC	61	BMC_EMMC_D3
58	BMC_EMMC_D4 (Reserved)	59	BMC_EMMC_CMD
		57	GND
56	BMC_EMMC_D5 (Reserved)	55	BMC_EMMC_CLK
54	BMC_EMMC_D6 (Reserved)		NC
52	BMC_EMMC_D7 (Reserved)		GND
50	NC		
48	NC		PERp0 (Reserved)
46	EEPROM_WP	47	PERn0 (Reserved)
44	ALERT# (Reserved)	45	GND
42	SMB_DATA (3.3V)	43	PETp0 (Reserved)
	· ,	41	PETn0 (Reserved)
	SMB_CLK (3.3V) FRU EEPROM ADDR	39	GND
	(Floating on MB: 0xAC; GND on MB: 0xA8)		
36	GND	37	BMC_FW_SPI_CS0_N
		35	BMC_FW_SPI_CS1_N
34	REFCLKp (Reserved)	33	GND
32	REFCLKn (Reserved)		
		J١	BMC_FW_SPI_CLK

Open Compute Project • Wedge 400 Design Specification

As BMC is on SMB and it's not easy to access if BMC flash and eMMC were located on SMB, so physically this daughter card (BSM, BMC Storage Module) is located on SCM as SCM is a FRU, and users can easily pull out the SCM card, and then take the BSM module out for ERAD/replacement. Here is the picture of W400 BSM module:

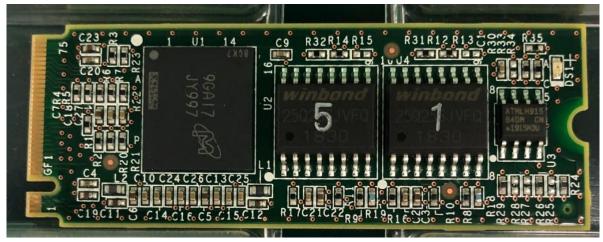
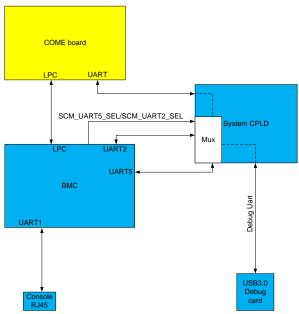



Figure 13:BSM proto picture

5.5.2. UART Connection

The following diagram shows UART connections of front console port, uS and BMC's UART ports.

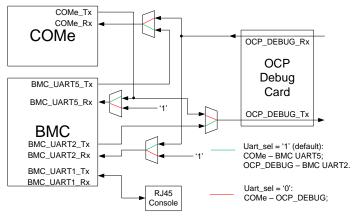


Figure 14:UART Diagram

5.5.3. OOB Switch

The following diagram shows the OOB switch connections.

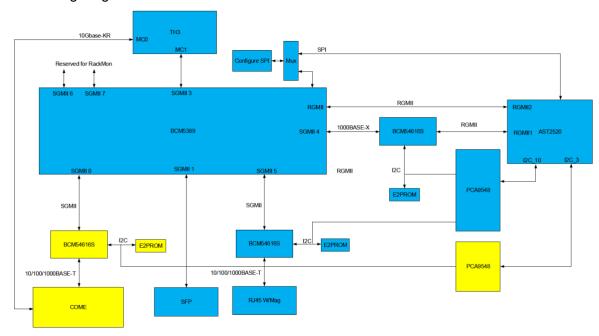


Figure 15:00B Diagram

5.5.4. RackMon Interface

The following diagram shows the RackMon interface in system.

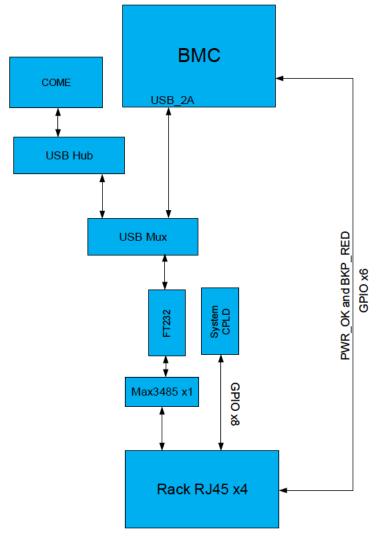


Figure 16:Rackmon Diagram

5.6. System Powerup Sequence

Wedge400 has a PWR CPLD design to enable remotely power cycling the whole system. The powerup sequencer controls the major power rails coming up in the right sequence. The hot swap controller is designed for FRUs like SCM. Here is the diagram showing the detailed HW design:

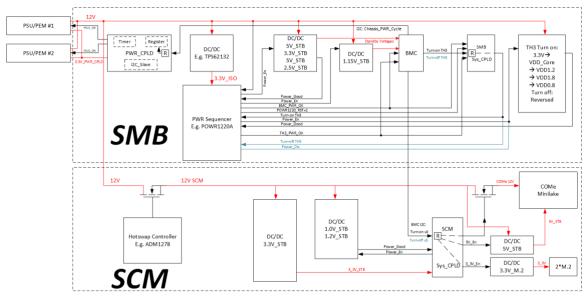


Figure 17:Wedge400 power control/sequence diagram

5.7. Switch Main Board (SMB)

Switch Main Board has two major function blocks:

- Data plane function with 12.8T Switch ASIC;
- Management plane function with BMC AST2520 system;
 - o BMC supports TPM 2.0 through I2C device SLB 9670VQ2.0.

SMB also provides DOM FPGA function for SCM CPU to access QSFP modules through PCIe. Here is high level DOM FPGA diagram:

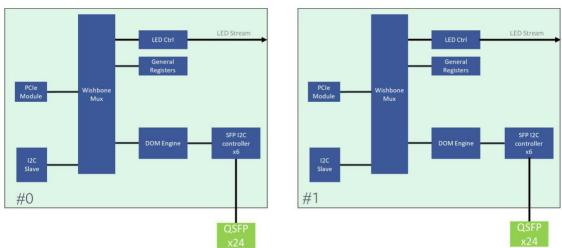


Figure 18:DOM FPGA Diagram

5.7.1. Block Diagram of SMB

The following diagram shows the diagram of Switch Main Board (SMB).

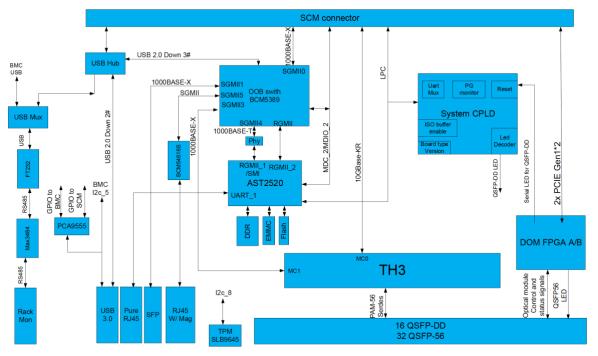


Figure 19:Switch Main Board Diagram

5.7.2. BMC I2C diagram

The following table shows the I2C topology of BMC.

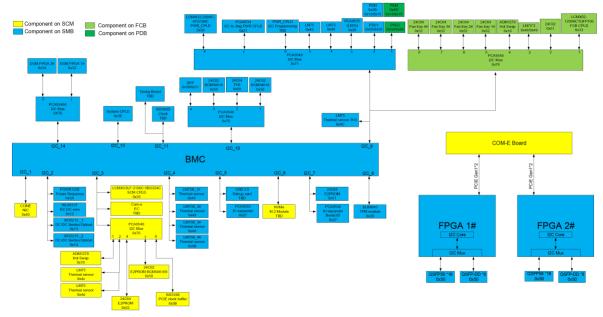


Figure 20:SMB I2C Diagram

5.7.3. BMC I2C mapping

Table 2:BMC I2C address table

Open Compute Project • Wedge 400 Design Specification

HW	SW Bus	Address	Component	Board			
Bus	011 240		•				
I2c_1		0x20	Com-e EC	SCM			
		0x2F	IR3595 (XP3R3V & Serdes) I2C				
I2c_2		0x47	IR3595 (XP3R3V & Serdes) PMBus				
		0x35	IR3595 (XP3R3V & 0.8 Voltage) I2C	SMB			
		0x4D	IR3595 (XP3R3V & 0.8 Voltage) PMbus				
		0x60	<u> </u>				
		0x3A	POWR1220				
I2c_3		0x3e	SCM CPLD	SCM			
120_3		0x70	PCA9548	SCM			
	Channel1, 0x01	0x10	ADM1278				
	Channel2,	0x4C	TMP75#1				
	0x02 0x4D		TMP75#2				
I2c_3 0x70	Channel4, 0x08	0x52	24C64 (SCM_Inv)				
I2C Switch	Channel5, 0x10	0x50	24C02 (BCM54616S EEPROM)	SCM			
Switch	Channel6, 0x20		NVME				
	Channel7,TBD	0x56	BSM EEPROM				
	Channel8, 0x80	0x6c	SI53108(Clock buffer)				
		0x48	TMP75#1				
		0x49	TMP75#2				
		0x4A	TMP75#3				
I2c_4		0x4B	TMP75#4	SMB			
		0x4C	TMP421 for intake air				
		0x4E	TMP421 for intake air				
		0x4F	TMP422/ TH3 remote temp	-			
I2c_5		0x54	OCP debug card	SMB			
120_0		0X27	TCA9555	SMB			
I2C_6		0x60	DOM_FPGA_2	SMB			
		0x21	PCA9534 (8-bit Borad ID)	SMB			
I2c_7		0x20	PCA9535 (LEDs)	RackMon			
		0x51	24C64 (SMB_Inv)	SMB			

Open Compute Project • Wedge 400 Design Specification

I2c_8		0x20	SLB9645 (TPM)	SMB			
I2c_9		0x70	PCA9548	SMB			
		0,450	AC PSU1 MCU/DC PSU 1 Hot				
	Channel1,	0x58	swap				
	0x01	0x50	EEPROM				
		0x18	PEM 1 Thermal sensor				
		0x58	AC PSU2 MCU/DC PSU 2 Hot				
	Channel2,		swap				
	0x02	0x50					
I2c_9		0x18	PEM 1 Thermal sensor				
0x70 I2C	Channel3, 0x4	0x50	24c02 (BMC RGMII PHY BCM54616S EEPROM)	SMB			
Switch			24c02 (BMC MDI PHY				
	Channel4, 0x8	0x50	BCM54616S EEPROM)				
	Channel5,	054	24c64 (TH3 EEPROM				
	0x10	0x54	IP_BSC0)				
	Channel6,		Reserved				
	0x20		PWR_CPLD_I2C_Programming				
	Channel8,	0x3e	PWR_CPLD				
10 - 40	0x80	074	OLEOOA (TI IO 450 OSIMILE OL. II)				
I2c_10		0x74	SI5391 (TH3 156.25MHz Clock)	PTP			
I2c_11		0v70	PTP (Reserved)				
I2c_12	Channeld	0x70	PCA9548	FCM			
	Channel1, 0x01	0x3e	FAN CPLD				
	Channel2, 0x02	0x51	24c02 (FCB Inv)				
	Channel3,	0x48	TMP75	FCM			
	0x04	0x49	TMP75				
I2c_12 0x70	Channel4, 0x08	0x10	ADM1278				
I2C Switch	Channel5, 0x10	0x52	24c64 (Fan#1)				
	Channel6, 0x20	0x52	24c64 (Fan#2)	FAN-			
	Channel7, 0x40	0x52	24c64 (Fan#3)	Trays			
	0.7.10						
	Channel8, 0x80	0x52	24c64 (Fan#4)				
I2c_13	Channel8,	0x52 0x3E	24c64 (Fan#4) SMB SYS CPLD	SMB			

5.7.4. BMC SPI diagram

BMC's SPI#0 is used to upgrade FWs/images. Here are the SPI devices connected to BMC's SPI#0 and the chip select functionality implemented in SMB sys_CPLD.

SPI devices on SMB:

- 2 pcs of FPGA flash W25Q128
- Switching ASIC flash W25Q257
- BCM5396's SPI EEPROM 93C46
- BMC's SPI EEPROM 93C46
- SPI device on SCM:
- Backup BIOS flash W25Q128

The following diagram shows SPI connections in W400:

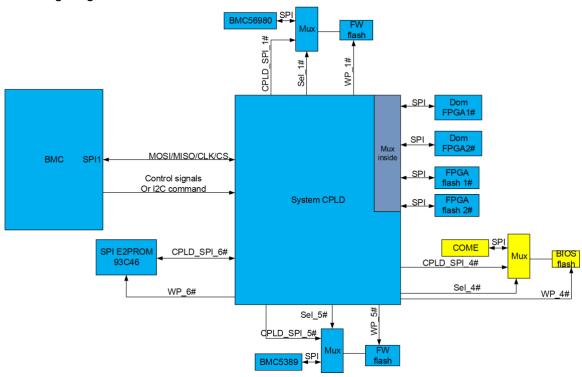


Figure 21:SPI Diagram

5.7.5. PWR_CPLD Registers

PWR_CPLD is a dedicated CPLD to implement the functionality of power cycling the whole system. BMC configures the registers of PWR_CPLD and the system will be powered off for a certain period and then powered on automatically. Here is an example of CPLD diagram:

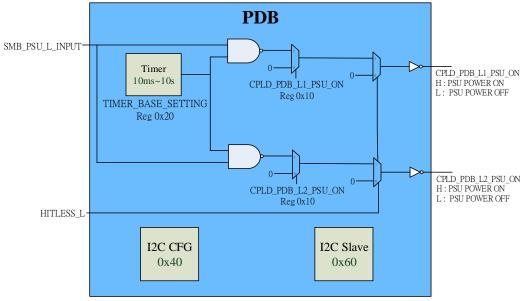


Figure 22:SPI Diagram

CPLD Registers							
Offset	Name	Description					
0x01	CPLD_VERSION	CPLD Version Register					
0x02	CPLD_SUB_VERSION	CPLD Sub Version Register					
0x10	SYSTEM_MISC_1	System Misc 1 Register					
0x11	SYSTEM_MISC_2	System Misc 2 Register					
0x20	TIMER_BASE_SETTING	Timer Base Setting Register					
0x21	TIMER_COUNTER_SETTING	Timer Counter setting Register					
0x22	TIMER_COUNTER_STATE	Timer Counter State Register					
0x23	TIMER_MISC	Timer Misc Register					

Register 0x01: CPLD_VERSION - CPLD Version Register

Table 3 – CPLD Version Register

Bit #	Name	R/W	Reset Value	Description
[7]	Reserved	R		
[6]	RELEASE_STA	R		Released Bit 0= not released, 1= Released version after PVT
[5:0]	CPLD_VER	R		CPLD Revision[5:0]

Register 0x02: CPLD_SUB_VERSION - CPLD Sub Version Register

Table 4 – CPLD Sub Version Register

Bit #	Name	R/W	Reset Value	Description
[7:0]	CPLD_SUB_VERS	D		CPLD sub-version, used for HW debug
[7:0]	ION	K		only

Register 0x10 SYSTEM_MISC_1 – System Misc 1 Register

Table 5 – System Misc 1 Register

Bit #	Name	R/W	Default Value	Description
[7:2]	Reseved			
[4]	CPLD PSU2 ON	R/W	1	0: L2/R2 PSU2 POWER OFF
ניו	CFLD_F302_ON	JZ_ON R/VV		1: L2/R2 PSU2 POWER ON
[0]	CDLD DOLLA ON	R/W	1	0: L1/R1 PSU1 POWER OFF
[0]	CPLD_PSU1_ON	IT/VV		1: L1/R1 PSU1 POWER ON

Register 0x11 SYSTEM_MISC_2 – System Misc 2 Register

Table 6 - System Misc 2 Register

Bit #	Name	R/W	Default Value	Description
[7:4]	Reserved			
[3]	CPLD_PSU2_PG	R	1	1: Normal 0:Fail
[2]	CPLD_PSU1_PG	R	1	1: Normal 0:Fail
[1:0]	Reserved	R	0x3	

Register 0x20 TIMER_BASE_SETTING – Timer Base Setting Register

Table 7 – Timer Base Setting Register

Bit #	Name	R/W	Default Value	Description
[7:4]	Reserved			
[3]	[3] TIMER_BASE_10s	D/M/	0	Timer base 10s, (Note: This value
	THIVILIN_DAGE_103	1 X / V V		needs 0x23[1] to update)
[2]	TIMER_BASE_1s	R/M	0	Timer base 1s, (Note: This value needs
[۷]				0x23[1] to update)
[1]	TIMER_BASE_100	D/M/	1	Timer base 100ms, (Note: This value
ניו	ms	17/ / /		needs 0x23[1] to update)
[0]	TIMER_BASE_10	R/W	0	Timer base 10ms, (Note: This value
[O]	ms	1 1/ V V		needs 0x23[1] to update)

Register 0x21: TIMER_COUNTER_SETTING – Timer Counter setting Register

Table 8 - Timer Counter Setting Register

Bit #	Name	R/W	Default Value	Description
[7:0]	TIMER_COUNTE R_SETTING	R/W		This timer is used for power up automatically, When counter down to zero, the power will repower up.

		(Note: This value needs 0x23[1] to	
		update)	

Register 0x22 TIMER_COUNTER_STATE - Timer Counter State Register

Table 9 – Timer Counter State Register

Bit #	Name	R/W	Default Value	Description
[7:0]	TIMER_COUNTER_S TATE	R		The counter state

Register 0x23: TIMER_MISC - Timer Misc Register

Table 10 – Timer Misc Register

Bit #	Name	R/W	Reset Value	Description
[7:2]	Reserved			
			0	0: No Update
[4]	TIMER_COUNTER_	R/W		1: Update the 0x21 and 0x20
[1]	SETTING_UPDATE			TIMER_BASE_SETTING
				TIMER_COUNTER_SETTING
[0]	POWER_CYCLE_GC	DAA	,0	0: No power cycle
[0]	FOWER_CYCLE_GC	/ITX/VV		1: Start the power cycle

5.7.6. SMB sys_CPLD Registers

Here are the main functionalities of system CPLD on SMB:

- All the major components power/reset sequence and controlling through reset registers;
- SCM/PSU/FCM present status access through registers;
- Control I/O signals on SMB board through register reads/writes, like Write protection pins, enable/disable pins, Programming pins, UART selection pins, SPI chip selection pins, etc;
- Control FPGA init and CPU reset sequence;
- Interrupt status/masks controlling through registers;
- SFP/SFP+ of OOB status controlling;
- UART selections;
- Support hitless programming; (This is general requirement for all the CPLDs.)
- Other clue logics.

Two identical FPGA share the same image to shorten programming time, so this CPLD needs to take care of this unique requirement. CPLD needs to allow the FPGA to be initialized one by one, from the same SPI flash, then reset release CPU, so both FPGA can get their PCI enumerated properly.

CPLD Registers						
Offset	Name	Description				
0x00	SYSPLD_REG_BOARD_INFO					

Open Compute Project • Wedge 400 Design Specification

	to the jobs through the Books to produce the	
0x01	SYSPLD_REG_PLD_VERSION	
0x02	SYSPLD_REG_PLD_SUB_VERSION	
0x03	SYSPLD_REG_PSU_STATUS	
0x05	SYSPLD_REG_SYSTEM_RST_1	
0x06	SYSPLD_REG_SYSTEM_RST_2	
0x07	SYSPLD_REG_SYSTEM_RST_3	
0x10	SYSPLD_REG_SYSTEM_INT_1	
0x11	SYSPLD_REG_SYSTEM_INT_2	
0x12	SYSPLD_REG_SYSTEM_INT_3	
0x20	SYSPLD_REG_SYSTEM_INT_MASK	
	_1	
0x21	SYSPLD_REG_SYSTEM_INT_MASK	
	_2	
0x22	SYSPLD_REG_SYSTEM_INT_MASK	
	_3	
0x30	SYSPLD_REG_SYSTEM_INT_STA_	
	1	
0x31	SYSPLD_REG_SYSTEM_INT_STA_	
	2	
0x32	SYSPLD_REG_SYSTEM_INT_STA_	
	3	
0x39	SYSPLD_REG_PORT_LED_TEST	
0x3A	SYSPLD_REG_UART_MUX	
0x40	SYSPLD_REG_MISC_BMC	
0x41	SYSPLD_REG_MISC_1	
0x42	SYSPLD_REG_MISC_2	
0x43	SYSPLD_REG_MISC_PWR_1	
0x44	SYSPLD_REG_MISC_PWR_2	
0x45	SYSPLD_REG_MISC_PWR_3	
0x46	SYSPLD_REG_MAC_ROV	
0x47	SYSPLD_REG_FPGA_INITIAL	
0x48	SYSPLD_REG_SPI_MUX_1	
0x4A	REG_BMC_RESERVE_1	
0x4B	REG_BMC_RESERVE_2	
0x4C	REG_BMC_RESERVE_3	
0x4D	Rack_Mon IO control_1	
0x4E	Rack_Mon IO control_2	
0x4F	Rack_Mon IO control_3	
0x50	CPLD_FPGA IO control_1	
0x51	CPLD_FPGA IO control_2	
0x52	CPLD_FPGA IO control_3	

Register 0x01: Board_VERSION – Board Version Register

Table 11 – CPLD Board Version Register

Bit #	Name	R/W	Reset Value	Description
[7-2]	Reserved	R		
[1:0]	Board_Version	R		Board Version[1:0]

Register 0x01: CPLD_VERSION - CPLD Version Register

Table 12 – CPLD Version Register

Bit #	Name	R/W	Reset Value Description
[7]	Reserved	R	
[6]	RELEASE_STA	R	Released Bit 0= not released, 1= Released version after PVT
[5:0]	CPLD_VER	R	CPLD Revision[5:0]

Register 0x02: CPLD_SUB_VERSION – CPLD Sub Version Register

Table 13 – CPLD Sub Version Register

Bit #	Name	R/W	Reset Value	Description
[7:0]	CPLD_SUB_VERS	R		CPLD sub-version, used for HW debug
[7.0]	ION			only

Register 0x03 SYSPLD_REG_PSU_STATUS

Table 14 - SYSPLD REG PSU STATUS Register

Bit #	Name	R/W	Default Value	Description
[7:4]	Reseved	R		
[3]	PSU2_ACOK	R		1: PSU input OK. When AC PSU, means AC input, when PEM, means 12V input. 0: PSU input Not OK.
[2]	PSU1_ACOK	R		1: PSU input OK. When AC PSU, means AC input, when PEM, means 12V input. 0: PSU input Not OK.
[1]	PSU2_PWROK	R		1: PSU DC output OK. 0: PSU DC output Not OK.
[0]	PSU1_PWROK	R		1: PSU DC output OK. 0: PSU DC output Not OK.

Register 0x5 SYSPLD_REG_SYSTEM_RST_1

Table 15 – SYSPLD_REG_SYSTEM_RST_1 Register

Bit #	Name	R/W	Default Value	Description
-------	------	-----	---------------	-------------

[7]	SI5391B_RST_N	R/W	1	CLK buffer reset. Low active.
[6]	USBHUB_RST_N	R/W	1	USB bridge reset. Low active.
[5]	BMC_LPCRST_N	R/W	1	BMC_LPC reset. Low active.
[-	BMC_PHY_2_RST _N		1	OOB front panel Phy reset. Low active.
[3]	BMC_PHY_1_RST _N	R/W	1	OOB RGMII Phy reset. Low active.
[2]	B_N	K/VV	1	OOB switch reset. Low active.
[1]	MAC_PCIE_PERS T_L	R/W	1	TH3 PCIE reset. Low active.
[0]	MAC_RESET_N	R/W	1	TH3 reset. Low active.

Register 0x6 SYSPLD_REG_SYSTEM_RST_2

Table 16 – SYSPLD_REG_SYSTEM_RST_2 Register

Bit #	Name	R/W	Default Value	Description
[7]	FT232_RESET_N	R/W	1	FT232_RESET. Low active.
[6]	TPM_RST_N	R/W	1	TPM module reset. Low active.
[5]	SCM_CPLD_RES ET	R/W	1	SCM CPLD reset. Low active.
[4]	FCM_CPLD_RST	R/W	1	FCB board reset. Low active.
[3]	FCM_PCA9548_R	R/W	1	FCB board 9548 reset. BMC I2C bus 9.
ادا	ST			Low active.
[2]	PCA9534_RST_N	R/W	1	SMB board 9548 reset. BMC I2C bus 14.
[۷]				Low active.
[1]	PCA9535_RST_N	R/W	1	SMB board 9548 reset. BMC I2C bus 10.
				Low active.
[0]	PCA9548A_2_RE	R/W	1	SMB board 9548 reset. BMC I2C bus 9.
	SET_N			Low active.

Register 0x7 SYSPLD_REG_SYSTEM_RST_3

Table 17 - SYSPLD_REG_SYSTEM_RST_3 Register

Bit #	Name	R/W	Default Value	Description
[7:2]	Reseved			
[1]	DOM_FPGA2_RS T_IN	R/W	1	DOM_FPGA2_RST. Low active.
[0]	DOM_FPGA1_RS T_IN	R/W	1	DOM_FPGA1_RST. Low active.

Register 0x10 SYSPLD_REG_SYSTEM_INT_1

Table 18 – SYSPLD_REG_SYSTEM_INT_1 Register

Bit #	Name	R/W	Default	Description
			Value	
[7]	PSU_ALERT_2_L	RC	1	SCM_CPLD Interrupt
				0: Status changed from last read
				1: Status not changed
		RC	1	FCB_CPLD Interrupt
[6]	PSU_ALERT_1_L			0: Status changed from last read
				1: Status not changed
	SCM_CPLD_Int	RC	1	SCM_CPLD Interrupt
[5]				0: Status changed from last read
				1: Status not changed
		RC	1	FCB_CPLD Interrupt
[4]	FCB_CPLD_Int			0: Status changed from last read
				1: Status not changed
	TEMP_SENSOR_CPLD_ ALERT4	RC	1	Thermal sensor int_4
[3]				0: Status changed from last read
				1: Status not changed
	TEMP_SENSOR_CPLD_ ALERT3	RC	1	Thermal sensor int_3
[2]				0: Status changed from last read
				1: Status not changed
	TEMP_SENSOR_CPLD_ ALERT2	RC	1	Thermal sensor int_2
[1]				0: Status changed from last read
				1: Status not changed
[0]	TEMP_SENSOR_CPLD_ ALERT1	RC	1	Thermal sensor int_1
				0: Status changed from last read
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1: Status not changed

Register 0x11 SYSPLD_REG_SYSTEM_INT_2

Table 19 - SYSPLD_REG_SYSTEM_INT_2

Bit #	Name	R/W	Default Value	Description
[7]	PSU_PRNST_2_N	RC	1	PSU 2 present interrupts.
		RC	4	·
[6]	PSU_PRNST_1_N	RC	I	PSU 1 present interrupts.
[5]	SCM_PRESET	RC	1	SCM present interrupts.
[4]	DEBUG_PRESENT_	RC	1	DEBUG card present interrupts.
[4]	N			DEBOG card present interrupts.
[0]	MAC_CPLD_PCIE_	RC	1	PCIE Wake interrupt
[3]	WAKE_L			
[2]	SMB_TPM_INT_N	RC	1	TPM I2C INTR
[4]	MAC_CPLD_PCIE_I	RC	1	PCIE_INTR
[1]	NTR_L			
[0]	TPM_PP	RC	1	TPM PP interrupt

Register 0x12 SYSPLD_REG_SYSTEM_INT_3

Table 20 – SYSPLD_REG_SYSTEM_INT_3 Register

Bit #	Name	R/W	Default Value	Description
[7]	FAULT_R_XP5R0V _USB	RC	1	USB XP5R0V fault interrupts
[6]	XP5R0V_PG	RC	1	XP5R0V power good interrupts.
[5]	BMC_POWER_OK	RC	1	BMC all power rails power ok interrupts.
[4]	TH3_POWER_OK	RC	1	TH3 all power rails power ok interrupts.
[3]	PSU_ACOK_2	RC	1	PSU2 AC Input power ok interrupts.
[2]	PSU_ACOK_1	RC	1	PSU1 AC Input power ok interrupts.
[1]	PSU_PWROK_2	RC	1	PSU2 DC output power ok interrupts.
[0]	PSU_PWROK_1	RC	1	PSU1 DC output power ok interrupts.

Register 0x20 SYSPLD_REG_SYSTEM_INT_Mask_1

Table 21 – SYSPLD_REG_SYSTEM_INT_Mask_1 Register

k
k
<
k
(
k
k
k
k
k

Register 0x21 SYSPLD_REG_SYSTEM_INT_Mask_2

Table 22 – SYSPLD_REG_SYSTEM_INT_Mask_2 Register

Bit #	Name	R/W	Default	Description
			Value	
[7]	PSU_PRNST_2_N	R/W	1	PSU 2 present interrupts mask
[']	mask			1 30 2 present interrupts mask
[6]	PSU_PRNST_1_N	R/W	1	PSU 1 present interrupts mask
[O]	mask			r 50 i present interrupts mask
[5]	SCM_PRESET mask	R/W	1	SCM present interrupts mask
[4]	DEBUG_PRESENT_	R/W	1	DEBUG card present interrupts mask
[4]	N mask			DEBOG card present interrupts mask
[3]	MAC_CPLD_PCIE_	R/W	1	PCIE Wake interrupt mask
[3]	WAKE_L mask			
[2]	SMB_TPM_INT_N	R/W	1	TPM I2C INTR mask
[ک]	mask			
[1]	MAC_CPLD_PCIE_I	R/W	1	PCIE_INTR mask
[1]	NTR_L mask			
[0]	TPM_PP mask	R/W	1	TPM PP interrupt mask

Register 0x22 SYSPLD_REG_SYSTEM_INT_Mask_3

Table 23 – SYSPLD_REG_SYSTEM_INT_Mask_3 Register

	0.0.2520_0	. • . –		
Bit #	Name	R/W	Default Value	Description
[7]	FAULT_R_XP5R0 V_USB mask	R/W	1	USB XP5R0V fault interrupts mask
[6]	XP5R0V_PG mask	R/W	1	XP5R0V power good interrupts mask
[5]	BMC_POWER_O K mask	R/W	1	BMC all power rails power ok interrupts mask
[4]	TH3_POWER_O K mask	R/W	1	TH3 all power rails power ok interrupts mask
[3]	PSU_ACOK_2 mask	R/W	1	PSU2 AC Input power ok interrupts mask
[2]	PSU_ACOK_1 mask	R/W	1	PSU1 AC Input power ok interrupts mask
[1]	PSU_PWROK_2 mask	R/W	1	PSU2 DC output power ok interrupts mask
[0]	PSU_PWROK_1 mask	R/W	1	PSU1 DC output power ok interrupts mask

Register 0x30 SYSPLD_REG_SYSTEM_INT_Status_1

Table 24 – SYSPLD_REG_SYSTEM_INT_Status_1 Register

Bit #	Name	R/W	Default Value	Description
	PSU_ALERT_2_L	R	1	SCM_CPLD Interrupt Status
[7]	Status			0: PSU has interrupts
	Status			1: Not interrupts
	PSU_ALERT_1_L	R	1	FCB_CPLD Interrupt Status
[6]	Status			0: PSU has interrupts
	Status			1: Not interrupts
	SCM_CPLD_Int	R	1	SCM_CPLD Interupt Status
[5]	Status			0: SCM has interrupts
	Status			1: Not interrupts
	FCB_CPLD_Int	R	1	FCB_CPLD Interupt Status
[4]	Status			0: FCB has interrupts
	Status			1: Not interrupts
	TEMP_SENSOR_	R	1	Thermal sensor int_4 Status
[3]	CPLD_ALERT4			0: Sensor has interrupts
	Status			1: Not interrupts
	TEMP_SENSOR_	R	1	Thermal sensor int_3 Status
[2]	CPLD_ALERT3			0: Sensor has interrupts
	Status			1: Not interrupts
	TEMP_SENSOR_	R	1	Thermal sensor int_2 Status
[1]	CPLD_ALERT2			0: Sensor has interrupts
	Status			1: Not interrupts
	TEMP_SENSOR_	R	1	Thermal sensor int_1 Status
[0]	CPLD_ALERT1			0: Sensor has interrupts
	Status			1: Not interrupts

Register 0x31 SYSPLD_REG_SYSTEM_INT_ Status _2

Table 25 - SYSPLD_REG_SYSTEM_INT_ Status _2 Register

	OTOLED_INEG_OTOLEM_INT_ Olared _E regioner				
Bit #	Name	R/W	Default Value	Description	
[7]	PSU_PRNST_2_N Status	R	1	PSU 2 present interrupts Status 0: PSU present 1: PSU not present	
[6]	PSU_PRNST_1_N Status	R	1	PSU 1 present interrupts Status 0: PSU present 1: PSU not present	
[5]	SCM_PRESET Status	R	1	SCM present interrupts Status 0: SCM present 1: SCM not present	
[4]	DEBUG_PRESEN T_N Status	R	1	DEBUG card present interrupts Status 0: Debug card present 1: Debug card not present	

[3]	MAC_CPLD_PCIE _WAKE_L Status	R	1	PCIE Wake interrupt Status 0: PCIE Wake status 1: PCIE Not Wake status
1121	SMB_TPM_INT_N Status	R	1	TPM I2C INTR Status 0: TPM I2C has interrupt 1: TPM I2C has not interrupt
[1]	MAC_CPLD_PCIE _INTR_L Status	R	1	PCIE_INTR Status 0: TH3 PCIE has interrupt 1: TH3 PCIE has not interrupt
[0]	TPM_PP Status	R	1	TPM PP interrupt Status 0: TPM PP has interrupt 1: TPM PP has not interrupt

Register 0x32 SYSPLD_REG_SYSTEM_INT_ Status_3

Table 26 – SYSPLD_REG_SYSTEM_INT_ Status_3 Register

Bit #	Name	R/W	Default	Description
			Value	
[7]	FAULT_R_XP5R0V_US B Status	R	1	USB XP5R0V fault interrupts Status
[6]	XP5R0V_PG Status	R	1	XP5R0V power good interrupts Status
[5]	BMC_POWER_OK Status	R	1	BMC all power rails power ok interrupts Status
[4]	TH3_POWER_OK Status	R	1	TH3 all power rails power ok interrupts Status
[3]	PSU_ACOK_2 Status	R	1	PSU2 AC Input power ok interrupts Status
[2]	PSU_ACOK_1 Status	R	1	PSU1 AC Input power ok interrupts Status
[1]	PSU_PWROK_2 Status	R	1	PSU2 DC output power ok interrupts Status
[0]	PSU_PWROK_1 Status	R	1	PSU1 DC output power ok interrupts Status

Register 0x39 SYSPLD_REG_PORT_LED_TEST

Table 27 – SYSPLD_REG_PORT_LED_TEST Register

Bit #	Name	R/W	Default Value	Description
[7:4]	Reserved			
[3]	LED Test enable	R/W	0	1: Test mode, LED manual control.
ျ	LLD 1631 GHADIG			0: LED control by FPGA LED stream.
[2]	LED Green	R/W	0	1: All Led Green on.
[2]	LED_Gleen			0: All Led Green off.
[1]	LED_Blue	R/W	0	1: All Led Blue on.

				0: All Led Blue off.
[0]	LED Dod	R/W	0	1: All Led Red on.
رنا	LED_Red			0: All Led Red off.

Register 0x3A SYSPLD_UART selection

Table 28 – SYSPLD_UART selection Register

Bit #	Name	R/W	Default Value	Description
[7:6]	Debug UART Selection	R/W	0	REAR_DBG_UART selection 00: Tomahawk UART-0 01: Tomahawk UART-2 10: Tomahawk UART-3 11: reserved
[5:2]	Reserved	R/W	0	1: All Led Blue on. 0: All Led Blue off.
[1:0]	UART Selection	R/W	10	00: UART_SELECT_BMC (BMC_UART_SEL5 signal controls UART selection) 01: UART_SELECT_DBG (USB_UART_SEL from META USB Debug controls UART selection) 10: force to select 0 11: force to select 1 UART_SEL 1: UART port of COMe connect to BMC UART-5, and META USB Debug UART connect to BMC UART-2 0: UART port of COMe connect to META USB Debug UART,

Register 0x40 SYSPLD_REG_MISC_BMC

Table 29 - SYSPLD_REG_MISC_BMC Register

Bit #	Name	R/W	Default Value	Description
[7]	CPLD_56980_QS PI_WP_N	R/W	1	TH3 PCIE FW E2PROM WP
[6]	CPLD_BMC_SPI_ 1_WP_N	R/W	1	BMC SPI 1 Flash WP
[5]	CPLD_BMC_PHY 1_WP	R/W	1	PHY1 E2 WP
[4]	CPLD_BMC_SPI_ 2_WP_N	R/W	1	BMC SPI 2 Flash WP

1131	CPLD_BMC_PHY 2_WP	R/W	1	PHY1 E2 WP
[2]	SCM_SPI_WP_N	R/W	1	COME BIOS WP
[1]	FPGA1_SPI_WP_ N	R/W	1	FPGA SPI E2PROM WP
[0]	FPGA2_SPI_WP_ N	R/W	1	FPGA SPI E2PROM WP

Register 0x41 SYSPLD_REG_MISC_1

Table 30 – SYSPLD_REG_MISC_1 Register

	_	0	
Name	R/W	Default Value	Description
Reserved	R/W	0	
CPLD_USB_MUX _SEL1	R/W	0	
CPLD_USB_MUX _SEL0	R/W	0	
USB_EN3	R/W	1	
USB_EN2	R/W	1	
USB_EN1	R/W	1	
	Reserved CPLD_USB_MUX _SEL1 CPLD_USB_MUX _SEL0 USB_EN3 USB_EN2	Reserved R/W CPLD_USB_MUX R/W _SEL1 CPLD_USB_MUX R/W _SEL0 USB_EN3 R/W USB_EN2 R/W	Reserved R/W 0 CPLD_USB_MUX R/W 0 _SEL1 CPLD_USB_MUX R/W 0 _SEL0 B/W 1 USB_EN2 R/W 1

Register 0x42 SYSPLD_REG_MISC_2

Table 31 – SYSPLD_REG_MISC_2 Register

Bit #	Name	R/W	Default Value	Description
[7:4]	Reserved		1	
[3]	XP5R0V_USB_EN	R/W	1	
[0]	SCM_POWER_EN	R/W	1	
[2]	ABLE			
[1]	FCM_3R3V_EN	R/W	1	
[0]	TH3_TURN_ON	R/W	0	

Register 0x43 SYSPLD_REG_MISC_PWR_1

Table 32 – SYSPLD_REG_MISC_PWR_1 Register

Bit #	Name	R/W	Default Value	Description
[7:6]	Reserved	R		
[5]	XP1R15V_BMC_P	R		1: Power good.
[5]	G			2. Power off or power failure
[4]	XP3R3V_BMC_P	R		1: Power good.
[4]	G			2. Power off or power failure
[3]	XP2R5V_BMC_P	R		1: Power good.
[3]	G			2. Power off or power failure

[2]	XP1R2V_BMC_P	R	1: Power good.	
[2]	G		Power off or power failure	
[4]	VDEDOV/ DC	R	1: Power good.	
נין	XP5R0V_PG		2. Power off or power failure	
[0]	XP3R3V_1220_P	R	1: Power good.	
[0]	G		2. Power off or power failure	

Register 0x44 SYSPLD_REG_MISC_PWR_2

Table 33 – SYSPLD_REG_MISC_PWR_2 Register

Bit #	Name	R/W	Default Value	Description
[7:6]	Reserved	R		
[5]	XP3R3V_Optical_Rig	R		1: Power good.
[5]	ht_PG			Power off or power failure
[4]	XP3R3V_Optical_Left	R		1: Power good.
[4]	_PG			2. Power off or power failure
[3]	USB_OC_PG	R		1: Power good.
ردا				Power off or power failure
[0]	XP1R0V_FPGA_PG	R		1: Power good.
[2]	AFIRUV_FFGA_FG			2. Power off or power failure
[4]	XP1R8V_FPGA_PG	R		1: Power good.
[1]	AFINOV_FFGA_FG			Power off or power failure
[0]	XP3R3V_FPGA_PG	R		1: Power good.
[0]				2. Power off or power failure

Register 0x45 SYSPLD_REG_MISC_PWR_3

Table 34 - SYSPLD_REG_MISC_PWR_3 Register

Bit #	Name	R/W	Default Value	Description
[7]	Reserved	R		
[6]	Reserved	R		
[5]	Reserved	R		
[4]	XP3R3V_TH3_PG	R		1: Power good.
[4]				2. Power off or power failure
[2]	TRVDD_TH3_PG	R		1: Power good.
[3]				2. Power off or power failure
[0]	VDDCore_TH3_P	R		1: Power good.
[2]	G			2. Power off or power failure
[4]	XP1R8V_TH3_PG	R		1: Power good.
[1]	AF INOV_INS_FG			2. Power off or power failure
[0]	VD4D2V/ TH2 DC	R		1: Power good.
[0]	XP1R2V_TH3_PG			2. Power off or power failure

Register 0x46 SYSPLD_REG_MAC_ROV

Table 35 – SYSPLD_REG_MAC_ROV Register

Bit #	Name	R/W	Default Value	Description
[7]	ROV_7	R		TH3 ROV_7 Value
[6]	ROV_6	R		TH3 ROV_6 Value
[5]	ROV_5	R		TH3 ROV_5 Value
[4]	ROV_4	R		TH3 ROV_4 Value
[3]	ROV_3	R		TH3 ROV_3 Value
[2]	ROV_2	R		TH3 ROV_2 Value
[1]	ROV_1	R		TH3 ROV_1 Value
[0]	ROV_0	R		TH3 ROV_0 Value

Register 0x47 SYSPLD_REG_FPGA_Initial

Table 36 – SYSPLD_REG_FPGA_Initial Register

Bit #	Name	R/W		Description
			Value	
[7]	Reserved			
[6]	Reserved			
[5]	DOM_FPGA2_PROG	R/W	1	TBD
	RAM			
[4]	DOM_FPGA1_PROG	R/W	1	TBD
[4]	RAM			
[3]	DOM_FPGA2_Initial	R/W	1	TBD
[2]	DOM_FPGA1_Initial	R/W	1	TBD
[4]	DOM_FPGA2_Done	R		1: DOM_FPGA2 load image finished.
[1]				0: DOM_FPGA load image not finished.
[0]	DOM FPGA1 Done	R		1: DOM_FPGA2 load image finished.
[0]	DOW_I FGAT_DONE			0: DOM_FPGA load image not finished.

Register 0x48 SYSPLD_REG_SPI_MUX_1

Table 37 – SYSPLD_REG_SPI_MUX_1 Register

Bit #	Name	R/W	Default Value	Description
[7:3]	Reserved	R	0	
		R/W	0	00h: BMC Select the System_E2.
				01h: BMC Select the BIOS.
				02h: BMC Select the BCM5389 E2.
[2:0]	BIOS_Sel			03h: BMC Select the TH3 PCIE E2.
				04h: BMC Select the FPGA1 flash.
				05h: BMC Select the FPGA2 flash.
				Others: Reserved

Register 0x4A REG_BMC_RESERVE_1

Table 38 – REG_BMC_RESERVE_1 Register

Bit #	Name	R/W	Default Value	Description
[7:0]	RacK_Mon_R[8:1]	R		Rack_Mon value input value

Register 0x4B REG_BMC_RESERVE_2

Table 39 - REG_BMC_RESERVE_2 Register

Bit #	Name	R/W	Default Value	Description
[7:0]	RacK_Mon_W[8:1]	R/W		Rack_Mon value Output value

Register 0x4C REG_BMC_RESERVE_3

Table 40 – REG_BMC_RESERVE_3 Register

Bit #	Name	R/W	Default Value	Description
[7:0]	RacK_Mon_EN[8:1	R/W		Rack_Mon value Output enables. 0: Output disables. 1: Output enables.

Register 0x4D Rack_Mon IO control_1

Table 41 – Rack_Mon IO control_1 Register

Bit #	Name	R/W	Default Value	Description
[7]	Reserved			
[6]	Reserved			
[5]	RMON_RF_3_inpu t	R		RF/PF input value
[4]	RMON_PF_3_inpu t	R		RF/PF input value
[3]	RMON_RF_2_inpu t	R		RF/PF input value
[2]	RMON_PF_2_inpu t	R		RF/PF input value
[1]	RMON_RF_1_inpu t	R		RF/PF input value
[0]	RMON_PF_1_inpu t	R		RF/PF input value

Register 0x4E Rack_Mon IO control_2

Table 42 – Rack_Mon IO control_2 Register

			•	
Bit #	Name	R/W	Default Value	Description
[7]	Reserved			
[6]	Reserved			

151	RMON_RF_3_outp ut	R/W	0	RF/PF output value
141	RMON_PF_3_outp ut	R/W	0	RF/PF output value
131	RMON_RF_2_outp ut	R/W	0	RF/PF output value
121	RMON_PF_2_outp ut	R/W	0	RF/PF output value
1	RMON_RF_1_outp ut	R/W	0	RF/PF output value
101	RMON_PF_1_outp ut	R/W	0	RF/PF output value

Register 0x4F Rack_Mon IO control_3

Table 43 - Rack_Mon IO control_3 Register

Bit #	Name	R/W	Default Value	Description
[7]	Reserved			
[6]	Reserved			
[5]	RMON_RF_3_outp	R/W	0	
ادا	ut_en			
[4]	RMON_PF_3_	R/W	0	
[4]	output_en			
[3]	RMON_RF_2_	R/W	0	RF/PF output enable
ردا	output_en			0: Output disables.
[2]	RMON_PF_2_	R/W	0	1: Output enables.
[4]	output_en			1. Output enables.
[1]	RMON_RF_1_	R/W	0	
[1]	output_en			
[0]	RMON_PF_1_outp	R/W	0	
[O]	ut			

Register 0x50 CPLD_FPGA IO control_1

Table 44 – CPLD_FPGA IO control_1Register

				
Bit #	Name	R/	Default Value	Description
		W		
[7]	FPGA2_CPLD_RESE	R		EDCA CDI Disput value
[7]	RED_4			FPGA_CPLD input value
[6]	FPGA2_CPLD_RESE	R		FPGA_CPLD input value
[6]	RED_3			
[6]	FPGA2_CPLD_RESE	R		FPGA_CPLD input value
[5]	RED_2			

[4]	FPGA2_CPLD_RESE	R	FPGA_CPLD input value
[4]	RED_1		
[3]	FPGA1_CPLD_RESE	R	FPGA_CPLD input value
	RED_4		
[2]	FPGA1_CPLD_RESE	R	FPGA_CPLD input value
[2]	RED_3		
[4]	FPGA1_CPLD_RESE	R	FPGA_CPLD input value
[1]	RED_2		
[0]	FPGA1_CPLD_RESE	R	FPGA_CPLD input value
[0]	RED_1		

Register 0x51 CPLD_FPGA IO control_2

Table 45 - CPLD_FPGA IO control_2Register

Bit #	Name	R/W	Default	Description
			Value	
[7]	FPGA2_CPLD_RESERED_4 _output	R/W	0	FPGA_CPLD output value
[6]	FPGA2_CPLD_RESERED_3 _output	R/W	0	FPGA_CPLD output value
[5]	FPGA2_CPLD_RESERED_2 _output	R/W	0	FPGA_CPLD output value
[4]	FPGA2_CPLD_RESERED_1 _output	R/W	0	FPGA_CPLD output value
[3]	FPGA1_CPLD_RESERED_4 _output	R/W	0	FPGA_CPLD output value
[2]	FPGA1_CPLD_RESERED_3 _output	R/W	0	FPGA_CPLD output value
[1]	FPGA1_CPLD_RESERED_2 _output	R/W	0	FPGA_CPLD output value
[0]	FPGA1_CPLD_RESERED_1 _output	R/W	0	FPGA_CPLD output value

Register 0x52 CPLD_FPGA IO control_3

Table 46 – CPLD_FPGA IO control_3 Register

Bit #	Name	R/W	Default	Description
			Value	
[7]	FPGA2_CPLD_RESERED_4	R/W	0	
[,]	_en			FPGA_CPLD output enable
[6]	FPGA2_CPLD_RESERED_3	R/W	()	0: Output disables.
[O]	_en			1: Output enables.
[5]	FPGA2_CPLD_RESERED_2	R/W	0	1. Output chables.
[J]	_en			

[4]	FPGA2_CPLD_RESERED_1	R/W	0	
[4]	_en			
[3]	FPGA1_CPLD_RESERED_4	R/W	0]
	_en			
[2]	FPGA1_CPLD_RESERED_3	R/W	0	
[2]	_en			
[1]	FPGA1_CPLD_RESERED_2	R/W	0	
ניו	_en			
[0]	FPGA1_CPLD_RESERED_1	R/W	0]
[O]	_en			

5.8. System Control Module (SCM)

The System Control Module (SCM) has the host COM-E CPU for Switching ASIC. The SCM support one Broadwell-DE COM-E CPU module.

5.8.1. System Control Module Block Diagram

The SCM has the following components:

- BW-DE COM-E CPU modules (a.k.a Minilake)
- one M.2 256GB NVMe SSD
- CPLD is used to provide control and management function for SCM
- One dedicated I2C management bus for SMB BMC to access SCM
- I2C bus to SMB

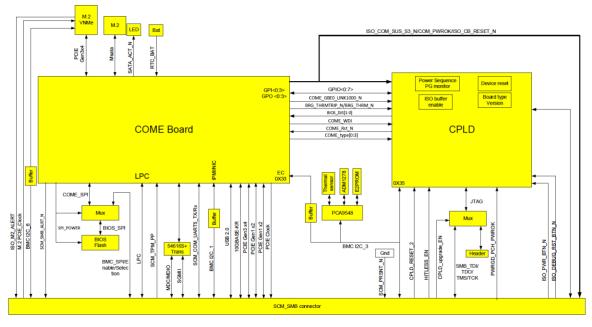


Figure 23:System Controller Module (SCM) block diagram

Figure 24:System Controller Module (SCM) top view

5.8.2. 10G KR interface

SCM reserves one pair of 10G KR signals to SMB. BW-DE COM-e CPU module supports extra 10G KR ethernet interface.

5.8.3. SCM LPC bus

The LPC bus of SCM COM-e CPU is extended across the high speed connector to access the LPC slave devices on SMB. The LPC is connected to BMC on SMB.

5.8.4. COM-Express CPU Module

COM-E CPU module is Meta MiniLake Type-7 COM-e CPU module. It has the following features:

- Processor
 - o Intel® Broadwell-DW processor D1527, 14nm process node
 - o Four-core, 2.2Ghz Base, 2.5Ghz Turbo, TDP 35W
 - o Cache: L1(32K data,32K instruction/core), L2 256K/core, L3 1.5MB/core
 - o 24x PCle3, 6x SATA3, 4x USB3.0, 4x USB2.0
 - Support Intel® TXT technology
 - o Up to DDR4-2133; SODIMM, UDIMM, RDIMM with ECC and non-ECC.
- BIOS
 - AMI BIOS
- Memory
 - Supports two SODIMM slots, each slot installs 16GB DDR4 SODIMM, up to 2133MT/s
- Storage Devices
 - One NVMe PCle gen3 x4, M.2 SSD
- Watchdog Timer
 - Programmable by embedded controller
- Expansion Interface
 - Supports up to 8 PCI Express gen2 lanes, and up to 16 PCIe Gen3 lanes.
 - 1 SPI interface for BIOS on carrier board
 - o 1 SM bus interface
 - 1 I2C interface
 - 1 LPC interface
- I/O Interface
 - o 1 Ethernet Onboard Intel I210IT
 - At least 1 serial port supported by onboard EC (Embedded Controller)
- USB
 - o One USB2.0
- Mechanic and Environment
 - Dimension 95mm(L) x 125mm(W) x 2.0mm(H)
- Power Supply DC 12V only
- Wedge400 uses the following configuration:
 - o Boot SPI Flash: 8Mbyte, secondary on SCM main board
 - o M.2 PCIe NVMe SSD: 256Gbyte, physically located at SCM main board
 - o Memory: 2*16Gbyte DDR4 ECC 1600 with thermal sensor, 240-pin SODIMM
 - BIOS: AMI UEFI
 - Ethernet: 1000GbaseT, BCM PHY on SCM main board to provide SGMII interface
 - PCIe: PCIe Gen3, x4 lanes are used for Switch ASIC PCIe access
 - PCIe: 2 ports PCIe Gen1/2 x2 lanes are used from SCM to SMB, will be used for the two DOM FPGAs access

- PCIe: PCIe Gen3, x4 lanes are used for M.2 NVMe SSD access
- USB port: USB 2.0 port is used for SMB USB interface
- o WDT: programmable via SW from 1s to 255min
- LPC: LPC bus at 33.33Mhz

The following is the block diagram of COM-E module:

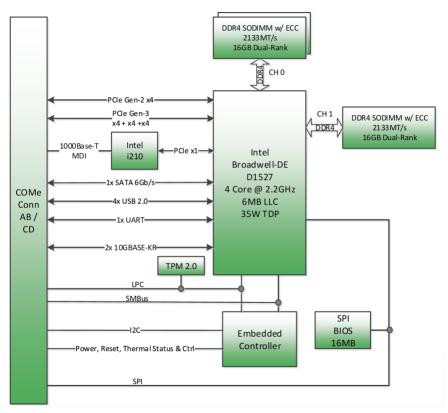


Figure 25:Meta MiniLake CPU Module Block Diagram

5.8.5. SCM Sys_CPLD Registers

Registers in SCM CPLD are accessed by BMC through I2C interface. Here are the definitions of the registers which should be in SCM Sys_CPLD.

CPLD Reg	CPLD Registers						
Offset	Name	Description					
0x00	BOARD_INFO	Board Info Register					
0x01	CPLD_VERSION	CPLD Version Register					
0x02	CPLD_SUB_VERSION	CPLD Sub Version Register					
0x0C	Watch Dog	Watch Dog Register					
0x10	SCM_RST_CTRL	SCM Reset Control Register					
0x11	COME_STA	COMe Status Register					
0x12	COME_BIOS_DIS_CTRL	COMe Bios DIS Control Register					
0x14	COME_PWR_CTRL_REG	COMe Power Control Register					

0x21	SYSTEM_INTERRUPT	System Interrupt Register
0x28	SYSTEM_INTERRUPT_MASK	System Interrupt Mask Register
0x29	SYSTEM_INTERRUPT_STA	System Interrupt Status Register
0x30	SYSTEM_POWER_STUTS	System Power Status Register
0x31	SYSTEM_POWER_ENABLE	System Power Enable Register
0x32	SYSTEM_ISO	System ISO Register
0x34	THERMAL	Thermal Register
0x35	SYSTEM_MISC_1	System Misc_1 Register
0x36	SYSTEM_MISC_2	System Misc_2 Register
0x37	SYSTEM_MISC_3	System Misc_3 Register
0x38	SYSTEM_MISC_4	System Misc_4 Register
0x39	SYSTEM_MISC_5	System Misc_5 Register
0x3A	SYSTEM_MISC_6	System Misc_6 Register

Register 0x00: BOARD_INFO - Board Info Register

Table 47 – Board Version Register

Bit #	Name	R/W	Reset Value	Description
[7:3]	Reserved	NA		
				000: R0A
				001: R0B
				010: R0C
				011: R01
[2:0]	PCB_Version	RO		100: R02
				101: R03
				110: PVT1
				110: PVT2
				Others: Reserved

Register 0x01: CPLD_VERSION – CPLD Version Register

Table 48 – CPLD Version Register

Bit #	Name	R/W	Reset Value	Description
[7]	Reserved	RO	0	
[6]	RELEASE_STA	RO		Released Bit 0= not released, 1= Released version after PVT
[5:0]	CPLD_VER	RO	0	CPLD Revision[5:0]

Register 0x02: CPLD_SUB_VERSION - CPLD Sub Version Register

Table 49 - CPLD Sub Version Register

Bit #	Name	R/W	Reset Value Description
-------	------	-----	-------------------------

[7:0]	CPLD sub-version	RO	0	used for HW debug only
-------	------------------	----	---	------------------------

Register 0x0C: Watch Dog – Watch Dog Register

Table 50 – Watch Dog Register

Bit #	Name	R/W	Default Value	Description
[7:1]	Reserved	NA	DA	Reserved
[0]	ISO_COM_BRG_ WDT	RO		

Register 0x10: SCM_RST_CTRL - SCM Reset Control Register

Table 51 –SCM Reset Control Register

Bit #	Name	R/W	Default Value	Description
[7:5]	Reserved	NA	NA	Reserved
[4]	ISO_SMB_CB_RESET_ N	R/W	1	0: write 0 to trigger System PCIE reset 1: normal
[3]	NVME_SSD_PERST	R/W	1	0: write 0 to trigger M.2 reset 1: normal
[2]	PCA9548_RST_N	R/W	1	0: write 0 to trigger PCA9548 reset 1: normal
[1]	CPLD_COM_PHY_RST _N	R/W	1	0: write 0 to trigger BCM54616S reset 1: normal
[0]	SYS_RESET_N	R/W	1	0: write 0 to trigger COMe reset 1: normal

Register 0x11: COME_STA - COMe Status Register

Table 52 - COMe Status Register

1010 02	Ocivic Otatas regist	<i>-</i> '		
Bit #	Name	R/W	Reset	Description
			Value	
[7:4]		NA		Reserved
[3]	ISO_COM_SUS_STA	RO		COMe Module SUS_STAT_N Status
ردا	T_N			Ocivic Module 666_61A1_IV Status
[2]	ISO_COM_SUS_S5_	RO		COMe Module SUS_S5_N Status
[4]	N N	_		Come module 666_66_14 Glatas
[1]	ISO_COM_SUS_S4_	RO		COMe Module SUS_S4_N Status
ניו	N			Colvic Micagic CCC_C+_IV Clates
[0]	ISO_COM_SUS_S3_	RO		COMe Module SUS_S3_N Status
[0]	N			Colvic Module CCC_CC_IV Claids

Register 0x12: COME_BIOS_DIS_CTRL - COMe Bios DIS Control Register

Table 53 – COMe Bios DIS Control Register

Bit #	Name	R/W	Default Value	Description
[7:2]	Reserved	R/W		Reserved
ניו	N N	R/W		Control COMe BIOS DIS1
[0]	COM_BIOS_DIS0_ N	R/W	0	Control COMe BIOS DIS0

Register 0x14: COME_PWR_CTRL_REG - COMe Power Control Register

Table 54 – COMe Power Control Register

Bit #	Name	R/W	Default Value	Description
[7:3]	Reserved		0	Reserved
			1	PWR_CYC_N
[2]	come pur etri regial	D ΛΛ/		Write 0 to this bit will trigger CPLD power
[2]	come_pwr_ctrl_reg[2]	K/ V V		cycling the COMe Module, This bit will
				auto set to 1 after Power Cycle finish.
			1	PWR_Force_off
[1]	come_pwr_ctrl_reg[1]	R/W		0: COMe power is OFF
				1: COMe power is ON
	Come_pwr_ctrl_reg[0		1	PWR_COME_EN
[0]		R/W		0: COMe power is OFF
]			1: COMe power is ON

Register 0x21: SYSTEM_INTERRUPT – System Interrupt Register

Table 55 – System Interrupt Register

Bit #	Name	R/W	Reset Value	Description
[7:4]	Reserved			
[5]	BCM54616S_INT_N	RC		1:No interrupt
[5]	5] DCW546165_IN1_N	KC.		0: Interrupt
[4]	LM75B_INT_N	RC		1:No interrupt
[4]	[4] LW/36_W1_N	RC		0: Interrupt
[2]	HOTSWAP PG	DC.	RC	1:No interrupt
[3]	HOTSWAP_PG	G RC		0: Interrupt
[0]	HS ALERT2	RC	DC	1:No interrupt
[2]	INS_ALER 12	RC		0: Interrupt
[4]	HS ALERT1	DO.	1:No interrupt	
[1]	no_ALEKII	RC		0: Interrupt
[0]	HC FALLE N	DC	D0	1:No interrupt
[0]	HS_FAULT_N	RC	0: Interrupt	

Register 0x28: SYSTEM_INTERRUPT_MASK – System Interrupt Mask Register

Table 56 - System Interrupt Mask Register

Bit #	Name	R/W Reset Value	Description
-------	------	-----------------	-------------

[7:6]	Reserved			Reserved
[5]	BCM54616S_INT_N_	R/W	1	1: CPLD blocks incoming the interrupt
[5]	MASK	1 X / V V		0: CPLD passes the interrupt to CPU
[4]	LM75B_INT_N_MAS	R/W	1	1: CPLD blocks incoming the interrupt
[4]	K	1 X / V V		0: CPLD passes the interrupt to CPU
[3]	HOTSWAP_PG_MA	R/W	///	1: CPLD blocks incoming the interrupt
	SK			0: CPLD passes the interrupt to CPU
[2]	HS_ALERT2_MASK	R/W	1	1: CPLD blocks incoming the interrupt
[2]	IIO_ALLITIZ_IVIAOR	1 \ / V V		0: CPLD passes the interrupt to CPU
[1]	HS_ALERT1_MASK	R/W	1	1: CPLD blocks incoming the interrupt
ניו	IIO_ALLINI I_IVIAGR	K/VV	VV	0: CPLD passes the interrupt to CPU
[0]	HS_FAULT_N_MAS	R/W	1	1: CPLD blocks incoming the interrupt
ردا	K	11/ / / /		0: CPLD passes the interrupt to CPU

Register 0x29: SYSTEM_INTERRUPT_Stauts - System Interrupt Stauts Register

Table 57 – System Interrupt Status Register

Bit #	Name	R/W	Reset	Description
			Value	
[7:6]	Reserved			Reserved
[5]	BCM54616S_INT_N	R		
[4]	LM75B_INT_N	R		
[3]	HOTSWAP_PG_status	R		
[2]	HS_ALERT2_status	R		
[1]	HS_ALERT1_status	R		
[0]	HS_FAULT_N_status	R		

Register 0x30: SYSTEM_POWER_STUTS – System Power Status Register

Table 58 – System Power Status Register

Bit #	Name	R/W	Reset Value	Description
[7]	Reserved			Reserved
[6]	Reserved			Reserved
[6]	COM PWROK	RO		1: Normal
[5]	CON_F WKOK	KO		0: Fail
[4]	PWRGD_PCH_PWR	RO		1: Normal
	OK	NO		0: Fail
[3]	XP12R0V_COME_P G	RO		1: Normal
				0: Fail
[2]	XP5R0V COME PG	PO		1: Normal
[4]	XF3KUV_COML_FG	NO		0: Fail
[1]	XP1R8V PG	RO		1: Normal
L'J	NI INOV_I'O	I CO		0: Fail
[0]	XP3R3V_SSD_PG	RO		1: Normal

	0: Fail	
--	---------	--

Register 0x31: SYSTEM_POWER_ENABLE - System Power Enable Register

Table 59 - System Power Enable Register

Bit #	Name	R/W	Reset Value	Description
[7:4]	Reserved			Reserved
[3]	XP12R0V_COME_E	R/W	1	1: Enable
[၁]	N	K/VV		0: disable
[2]	2] XP5R0V_COME_EN	R/W	1	1: Enable
[2]				0: disable
[1]	XP1R8V EN	R/W	1	1: Enable
נין	AF INOV_EIN	I\(\frac{1}{2}\) \(\frac{1}{2}\)	\/ V V	0: disable
[0]	VD3D3V SSD EN	R/W	1	1: Enable
[0]	XP3R3V_SSD_EN			0: disable

Register 0x32: SYSTEM_ISO_1 - System ISO 1 Register

Table 60 - System ISO 1 Register

Bit #	Name	R/W	Reset Value	Description
[7:4]	Reserved			Reserved
[3]	I2C1_BUF_EN	R/W	0	0: Enable
ျ	IZC I_BUF_EN	IK/VV		1: Disable
[2]	COME_USB_BUF_OE_N	R/W	0	0: Enable
[2]	COME_03B_B0I_OE_N	1 X / V V		1: Disable
[4]	IO_BUF_3V3_SCM_SMB_OE	R/W	0	0: Enable
[1]	_N	IX/VV		1: Disable
[0]	IO_BUF_COME_3V3_OE_N	R/W	0	0: Enable
[O]	IO_BOI _COME_3V3_OE_IV	1 X/ V V		1: Disable

Register 0x34: THERMAL – Thermal Register

Table 61 – Thermal Register

Bit #	Name	R/W	Reset Value	Description
[7:1]	Reserved			
[0]	CB_THRMTRIP_N	RO		Indicating that the CPU has entered thermal shutdown.

Register 0x35: SYSTEM_MISC_1 - System Misc 1 Register

Table 62 – System Misc 1 Register

Bit #	Name	R/W	Reset Value	Description
[7:2]	Reserved			
[1]	COME_GPI0	RW	1	TBD

[0]	RTC CLEAR	R/W 1	0: Clear CMOS
[0]	RIC_CLEAR	IX/VV	1: Normal work

Register 0x36: SYSTEM_MISC_2 - System Misc 2 Register

Table 63 – System Misc 2 Register

Bit #	Name	R/W	Reset Value	Description
[7:5]	Reserved			
[4]	ISO_HITLESS_EN	RO		1: Hitless on going. 0: Normal operation.
[3]	NVME_SSD_CLKRE Q_N	RO		1: Normal operation. 0: NVME SSD Req.
[2]	Reserved	RO		
[1]	Reserved	RO		
[0]	BATLOW_N	RO		Battery is normal Battery is low

Register 0x37: SYSTEM_MISC_3 - System Misc 3 Register

Table 64 – System Misc 3 Register

Bit #	Name	R/W	Reset	Description
			Value	
[7]	PWR_BTN_N	RO		OCP debug card used
				OCP debug card used
[6]	DEBUG_RST_BTN_N	RO		When negative edge detect, The bit will
				flag
				OCP debug card used
[5]	UART_SWITCH_N	RO		When negative edge detect, The bit will
				flag
[4]	COME_TYPE2	RO		Module Type Descriptions
[3]	COME_TYPE1	RO		Module Type Descriptions
[2]	COME_TYPE0	RO		Module Type Descriptions
[1]	Reserved			
[0]	COME_GPO_0	RO		

Register 0x38: SYSTEM_MISC_4 - System Misc 4 Register

Table 65 – System Misc 4 Register

Bit #	Name	R/W	Reset Value	Description
[7:3]	Reserved			
[1]	SCM_EEPROM_WP	RW		1: Write protect 0: Write enable

[0]	BCM54616_PHY_EEP	RW	1	1: Write protect	
լՕյ	ROM_WP	LVV		0: Write enable	

Register 0x39: SYSTEM_MISC_5 - System Misc 5 Register

Table 66 – System Misc 5 Register

Bit #	Name	R/W	Reset	Description
			Value	
[7:5]	Reserved			
[4]	SUS_S3_N_CLK_BUF	RW	1	1: Power on
[4]	FER_PWRD_N	IX V V		0: Power down
[2]	PCIE_CLK_BUFFER_	RW	1	1: Buffer disable
[3]	DIF3_OE_N	IX V V		0: Buffer enable
[2]	PCIE_CLK_BUFFER_	RW	1	1: Buffer disable
[4]	DIF2_OE_N	IXVV		0: Buffer enable
[4]	PCIE_CLK_BUFFER_	RW	1	1: Buffer disable
[1]	DIF1_OE_N	IX V V		0: Buffer enable
[0]	PCIE_CLK_BUFFER_	RW	1	1: Buffer disable
[0]	DIF0_OE_N	IZ V V		0: Buffer enable

Register 0x3A: SYSTEM_MISC_6 - System Misc 6 Register

Table 67 – System Misc 6 Register

Bit #	Name	R/W	Reset	Description
			Value	
[7:3]	Reserved			
[2]	CB_GBE0_ACT_N	RO		Link Active.
[1]	CB_GBE0_LINK1000_ N	RO		Link speed on 1G.
[0]	CB_GBE0_LINK100_N	RO		Link speed on 100M.

5.9. Fan Control Module(FCM) and Fan-tray

Wedge400 uses four 80mm x 80mm x 80mm CR fans to provide forced air cooling to the chassis. There is one Fan Control Module (FCM) inside Wedge400 chassis. The FCM has one CPLD used for fan controlling and fan status monitoring. The BMC on SMB can access the fan control CPLD via a system management I2C bus.

FAN CPLD's JTAG goes directly from BMC's GPIOs to make the CPLD re-programming fast. The following diagram shows the functional blocks of fan control module:

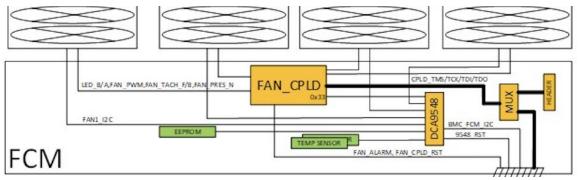


Figure 26:FAN Control Module (FCM)

5.9.1. Fan_CPLD Registers

There is a FAN_CPLD located on FCM board. Here are the functionalities of the CPLD:

- CPU can access FAN CPLD via I2C interface to get fan status.
- Register to control Fan PWM signal for fan speed control and detect fan direction, and the counter for fan speed reporting.
- Fan power control to enable/ disable Fan power rail.
- Detect fan speed to check fan status if there is any issue.
- Inform CPU by fan interrupt signal if any fan failure occurs, or temp sensor alerts or watchdog times out.
- The fan LED will report the fan status via Blue/Amber LEDs.

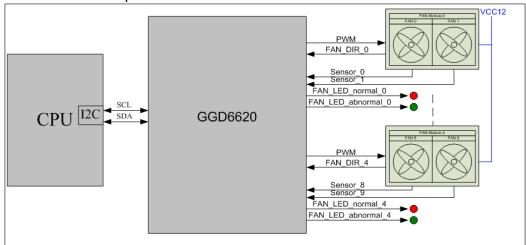


Figure 27:FAN Control Circuits

Here is the Fan_CPLD diagram:

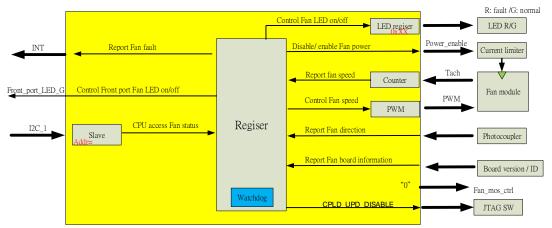


Figure 28:FAN CPLD Diagram

5.9.2. Fan Control Mechanism

Front fan max speed is 13400RPM, and rear fan max speed is 13700RPM. Period time is 200ms, CPLD counts negative waveform and records it at 0x20~0x23.

200ms / T ms = m (times / sec)

200ms / (1/2 * TS) = m (times / sec)

200ms/m (times / sec) = 1/2 * TS

TS = 60/N

N = 60/TS = 60/0.4*m=150*m (times / sec)

SW must multiple 150 and show it as RPM (Revolutions per minute).

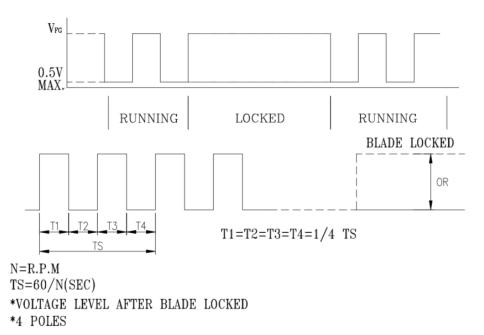


Figure 29:FAN PWM Calculation

Open Compute Project • Wedge 400 Design Specification
Fan PWM setting duty cycle table shown in below table
Table 68 – FAN PWM Setting

FAN_PWM[[4:0]
00_0000	0/63 or 0% duty cycle
00_0001	1/63 or 1.549% duty cycle
00_0010	2/63 or 3.116% duty cycle
00_0011	3/63 or 4.671% duty cycle
00_0100	4/63 or 6.235% duty cycle
00_0101	5/63 or 7.804% duty cycle
00_0110	6/63 or 9.358% duty cycle
00_0111	7/63 or 10.923% duty cycle
00_1000	8/63 or 12.485% duty cycle
00_1001	9/63 or 14.047% duty cycle
00_1010	10/63 or 15.611% duty cycle
00_1011	11/63 or 17.174% duty cycle
00_1100	12/63 or 18.732% duty cycle
00_1101	13/63 or 20.295% duty cycle
00_1110	14/63 or 21.864% duty cycle
00_1111	15/63 or 23.414% duty cycle
01_0000	16/63 or 24.987% duty cycle
01_0001	17/63 or 26.553% duty cycle
01_0010	18/63 or 28.121% duty cycle
01_0011	19/63 or 29.678% duty cycle
01_0100	20/63 or 31.234% duty cycle
01_0101	21/63 or 32.795% duty cycle
01_0110	22/63 or 34.375% duty cycle
01_0111	23/63 or 35.923% duty cycle
01_1000	24/63 or 37.482% duty cycle
01_1001	25/63 or 39.048% duty cycle
01_1010	26/63 or 40.617% duty cycle
01_1011	27/63 or 42.177% duty cycle
01_1100	28/63 or 43.732% duty cycle
01_1101	29/63 or 45.303% duty cycle
01_1110	30/63 or 46.863% duty cycle
01_1111	31/63 or 49.900% duty cycle
10_0000	32/63 or 51.546% duty cycle
10_0001	33/63 or 53.109% duty cycle
10_0010	34/63 or 54.669% duty cycle
10_0011	35/63 or 56.234% duty cycle
10_0100	36/63 or 57.789% duty cycle
10_0101	37/63 or 59.369% duty cycle

Open Compute Project • Wedge 400 Design Specification

10_0110	38/63 or 60.932% duty cycle
10_0111	39/63 or 62.495% duty cycle
10_1000	40/63 or 64.041% duty cycle
10_1001	41/63 or 65.613% duty cycle
10_1010	42/63 or 67.177% duty cycle
10_1011	43/63 or 68.745% duty cycle
10_1100	44/63 or 70.295% duty cycle
10_1101	45/63 or 71.863% duty cycle
10_1110	46/63 or 73.419% duty cycle
10_1111	47/63 or 74.975% duty cycle
11_0000	48/63 or 76.553% duty cycle
11_0001	49/63 or 78.106% duty cycle
11_0010	50/63 or 79.671% duty cycle
11_0011	51/63 or 81.234% duty cycle
11_0100	52/63 or 82.796% duty cycle
11_0101	53/63 or 84.349% duty cycle
11_0110	54/63 or 85.925% duty cycle
11_0111	55/63 or 87.482% duty cycle
11_1000	56/63 or 89.039% duty cycle
11_1001	57/63 or 90.606% duty cycle MAX
11_1010	58/63 or 92.169% duty cycle
11_1011	59/63 or 93.736% duty cycle
11_1100	60/63 or 95.297% duty cycle
11_1101	61/63 or 96.861% duty cycle
11_1110	62/63 or 98.424% duty cycle
11_1111	63/63 or 100.00% duty cycle

In order to reduce the inrush current after Fan present, CPLD will auto control the Fan PWM value after Fan presented. By default, the Fan PWM target value will set to 50% (This might be changed based on thermal testing results). CPLD will take 8S to increase the PWM duty cycle from 0% to 50%. Every 500mS increase a duty cycle level.

Below figure shows out the Fan present status and the PWM Duty Cycle output status.

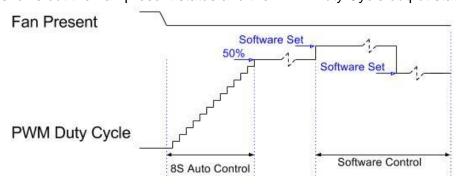


Figure 30:FAN Turn-on Slowly

Fan CPLD Register mapping:

Address	Register	R/W	Default value	Description
0x00	BOARD VERSION	Read Only	0x00	Board Version Register
0x01	CPLD VERSION	Read Only	01100	CPLD Version Register
0x02	CPLD_SUB_VERSI	Read Only	0x01	CPLD Sub Version Register
0x04	INT_RPT	Read clear	0xFF	Interrupt Report Register
0x7	LM75 Alert Status	Read Only		
0x8	LM75 Alert Mask	Read & Write	0x3	
0x0F	FCB_EEPROM_WP	Read & Write	0x00	Fan Control Board EEPROM Write Protect Register
0x10	FAN_ENABLE-REG	Read & Write	0x0F	Fan Enable Register
0x11	FCB_ADM1278_RE G	Read Only		ADM1278 Alert Register
0X12	FCB_ADM1278_MA SK_REG	Read & Write	0x00	ADM1278 Alert Mask Register
0x13	FCB_Efuse_REG	Read Only		FCB_Efuse Alert Register
0x14	FCB_Efuse_Mask_R EG	Read & Write		FCB_Efuse Alert Mask Register
0x20	FAN1_TACH_F_N	Read Only	0x00	Fan1 Front Fan Speed Register
0x21	FAN1_TACH_B_N	Read Only	0x00	Fan1 Back Fan Speed Register
0x22	FAN1_PWM	Read & Write	0x10	Fan1 PWM Control Register
0x24	FAN1_LED	Read & Write	0x00	Fan1 LED Control Register
0x25	FAN1_EEPROM_W P	Read & Write	0x00	Fan1 EEPOM Write Protect Register
0x28	FAN1_PRESENT	Read Only	0x00	Fan1 Status Register
0x29	FAN1_INT_MASK	Read & Write	0xFF	Fan1 Interrupt Mask Register
0x30-0x3A	FAN2 control register			The same as Fan1 control register from 0x20-0x2A
0x40_0x4A	FAN3 control register			The same as Fan1 control register from 0x20-0x2A
0x50-0x5A	FAN4 control register			The same as Fan1 control register from 0x20-0x2A

Register 0x00: BOARD_VERSION – Board Version Register

Table 69 – Board Version Register

Bit #	Name	R/W	Reset Value	Description
7	Reserved			Reserved
[6:4]	Version_ID[3:0]	R		000: R0A

			Others: Reserved
[3:2]	Reserved		Reserved
[1:0] Board ID[1	Board_ID[1:0])[1·0] D	00: Wedge 400 FCB board.
[1.0]	Board_iD[1.0]	I.	Others: Reserved

Register 0x01: CPLD_VERSION – CPLD Version Register

Table 70 – CPLD Version Register

Bit #	Name	R/W	Reset Value	Description
[7]	Reserved	R		Reserved
[6]	Released Bit	R		0=not released 1=Released version after PVT
[5:0]	CPLD_ver[5:0]	R		CPLD version

Register 0x02: CPLD_SUB_VERSION – CPLD Sub Version Register

Table 71 – CPLD Sub Version Register

Bit #	Name	R/W	Reset Value	Description
117.()1	CPLD_SUB_VERS	R		CPLD sub-version, used for HW debug only

Register 0x04: INT_RPT - Fan Interrupt Report Register

Table 72 - Fan Interrupt Report Register

Bit #	Name	R/W	Reset Value	Description
[7]	HS_INT	RC	1	Hot swap interrupt status.
[6]	Efuse_INT	RC	1	Efuse interrupt status.
[1]	LM75_INT_1	RC	1	LM75 interrupt status.
[0]	LM75_INT_1	RC	1	LM75 interrupt status.
			1	FanTray-4 Interrupt
[3]	FAN4_INT	RC		0: No interrupt
				1: Fan4 interrupt is active
			1	FanTray-3 Interrupt
[2]	FAN3_INT	RC		0: No interrupt
				1: Fan3 interrupt is active
			1	FanTray-2 Interrupt
[1]	FAN2_INT	RC		0: No interrupt
				1: Fan2 interrupt is active
			1	FanTray-1 Interrupt
[0]	FAN1_INT	RC		0: No interrupt
				1: Fan1 interrupt is active

Register 0x7: LM75 Alert Register

Table 73 – LM75 Alert Register

Bit #	Name	R/W	Reset Value	Description
[7:2]	Reserved			
[1]	LM75_2	R		LM75 interrupt status
[0]	LM75_1	R		LM75 interrupt status

Register 0x8: LM75 Alert Mask Register

Table 74 – LM75 Alert Mask Register

Bit #	Name	R/W	Reset Value	Description
[7:1]	Reserved			
[1]	LM75_2 MASK	R/W	1	0: not mask 1: mask
[0]	LM75_1 MASK	R/W	1	0: not mask 1: mask

Register 0x0F: FCB_EEPROM_WP - Fan Control Board EEPROM Write Protect Register

Table 75 - Fan Control Board EEPROM Write Protect Register

Bit #	Name	R/W	Reset Value	Description
[7:1]	Reserved			
		R/W	1	AN Control Board EERPOM Write
[0]	FCM_EEPROM_WP			Protect
[O]				1:Not protect
				0:Protect

Register 0x10 FAN_ENALBE_REG – Fan Enable Register

Table 76 – Fan Enable Register

Bit #	Name	R/W	Reset Value	Description
[7:4]	Reserved			
			1	FAN4 Power Supply Enable
[3]	FAN4_ENALBE_REG	R/W		1: Enable the fan Power
				2: Disable the fan Power
			1	FAN3 Power Supply Enable
[2]	FAN3_ENALBE_REG	R/W		1: Enable the fan Power
				2: Disable the fan Power
			1	FAN2 Power Supply Enable
[1]	FAN2_ENALBE_REG	R/W		1: Enable the fan Power
				2: Disable the fan Power
			1	FAN1 Power Supply Enable
[1]	FAN1_ENALBE_REG	R/W		1: Enable the fan Power
				2: Disable the fan Power

Register 0x11: ADM1278 Alert Register

Table 77 - ADM1278 Alert Register

Bit #	Name	R/W	Reset Value	Description
[7:4]	Reserved			
[3]	HS_FAULT	R	1	HS_FAULT status
[2]	HS_ALERT2	R	1	HS_FAULT2 status
[1]	HS_ALERT1	R	1	HS_FAULT1 status
[0]	HOTSWAP_PG	R	1	HOTSWAP_PG status

Register 0x12: ADM1278 Alert Mask Register

Table 78 – ADM1278 Alert Mask Register

Bit #	Name	R/W	Reset Value	Description
[7:4]	Reserved			
[3]	HS_FAULT_MASK	R/W	1	0: not mask
[၁]	I IO_I AULI_IVIAGN			1: mask
[2]	HS ALERT2 MASK	R/W	1	0: not mask
[2]	J MO_ALERIZ_MASK R	I\(\frac{1}{2}\) \(\frac{1}{2}\)		1: mask
[1]	HS ALERT1 MASK	R/W	1	0: not mask
נין	HO_ALENTI_WASK			1: mask
[0]	HOTSWAP_PG_MASK		1	0: not mask
[0]		IT\/ V V		1: mask

Register 0x13: FCB_Efuse Alert Register

Table 79 – FCB_Efuse Alert Register

Bit #	Name	R/W	Reset Value	Description
[7]	PG_FAN4	R	0	Fan4 Efuse PG status
[6]	PG_FAN3	R	0	Fan3 Efuse PG status
[5]	PG_FAN2	R	0	Fan2 Efuse PG status
[4]	PG_FAN1	R	0	Fan1 Efuse PG status
[3]	FLTB_FAN4	R	0	Fan4 FLTB status
[2]	FLTB_FAN3	R	0	Fan4 FLTB status
[1]	FLTB_FAN2	R	0	Fan4 FLTB status
[0]	FLTB_FAN1	R	0	Fan4 FLTB status

Register 0x13: FCB_Efuse Alert Mask Register

Table 80 – FCB_Efuse Alert Mask Register

Bit #	Name	R/W	Reset Value	Description
[7]	[7] PG FAN4 MASK	R/W	1	0: not mask
[7]	FG_FAIN4_WASK			1: mask
[6]	PG FAN3 MASK	R/W	1	0: not mask
[O]	FG_FAINS_WASK			1: mask
[5]	PG_FAN2_MASK	R/W	1	0: not mask

				1: mask
[4]	PG_FAN1_MASK	R/W	1	0: not mask
[4]	FG_FANT_WASK	IT/ V V		1: mask
[2]	FLTB_FAN4_MASK	R/W	1	0: not mask
[3]	FLID_FAIN4_IVIASK			1: mask
[2]	FLTB_FAN3_MASK	R/W	1	0: not mask
[2]	I LID_I ANO_INAON	17/ / /		1: mask
[1]	FLTB_FAN2_MASK	R/W	1	0: not mask
ניו	I LID_I ANZ_IVIASK	17/ / /		1: mask
[0]	0] FLTB_FAN1_MASK	R/W	1	0: not mask
[U]	I LID_I ANI_WASK	11/00		1: mask

Below register definition is the same for all Fans. Fan1 control register range is 0x20-0x2F. Fan2 register range is 0x30-0x3F. Fan3 register range is 0x40-0x4F. Fan4 register range is 0x50-0x5F.

Register 0x10*(i-1) +20: FANi_TACH_F_N - Fan1 Front Fan Speed Register, (i=1,2,3,4) Table 81 - Fani Front Fan Speed Register

. ~	D.O O .	r am r romer am opoca		,	
	Bit #	Name	R/W	Reset Value	Description
	[7:0]	FANi_TACH_F_N	RO		Fani Front Fan Speed

Register 0x10*(i-1) +21: FANi_RFAN_B_N - Fan1 Back Fan Speed Register, (i=1,2,3,4)

Table 82 - Fani Back Fan Speed Register

Bit #	Name	R/W	Reset Value	Description
[7:0]	FANI_TACH_B_N	RO		Fani Back Fan Speed

Register 0x10*(i-1) +22: FANi_PWM - Fan1 PWM Control Register

Table 83 – Fani PWM Control Register

Bit #	Name	R/W	Reset Value	Description
[7]	Reserved	RO		
[6:0]	FANi_PWM	R/W	,	FANi_PWM[5:0] FanTray i PWM control signal Please refer to Table3 for the mapping to fan duty cycle.

Register 0x10*(i-1) +24: FANi_LED – Fani LED Control Register

Table 84– Fani LED Control Register

Bit #	Name	R/W	Reset Value	Description
[7:2]	Reserved	R/W		
[1:0]	FANi_LED	R/W		FANi_LED_CTRL[1:0] 00: Under HW control 01: Red OFF, Blue ON

	10: Red ON, Blue OFF
	11: OFF
	If LED is under HW control
	Present_n=0, fan_alive_n=0, then Red OFF, Blue ON
	Present_n=1, fan_alive_n=x, then Red OFF, Blue OFF
	Present_n=0, fan_alive_n=1, then Red ON, Blue OFF

Register 0x10*(i-1) +25: FANi_EEPROM_WP - Fan1 EEPOM Write Protect Register

Table 85- Fani EEPROM Write Protect Register

Bit #	Name	R/W	Reset Value	Description
[7:1]	Reserved	R/W	1	
				FANi EERPOM Write Protect
[0]	FANi_EEPROM_WP	R/W		1:Protect
				0:Not protect

Register 0x10*(i-1) +28: FAN1_PRESENT - Fan1 Status Register

Table 86- Fani Status Register

Bit #	Name	R/W	Reset Value	Description
[7:4]	Reserved	RO		
				Front Fani Alive Status
[3]	FFANi_ALIVE	RO		0: alive
				1: bad
				Rear Fani Alive Status
[2]	RFANi_ALIVE	RO		0: alive
				1: bad
				Fani Alive Status
[1]	FANi_ALIVE	RO		0: alive
				1: bad
				FanTray i Present
[0]	FANi_PRESENT	RO		0: alive
				1: bad

Register 0x10*(i-1) +29: FANi_INT_MASK - Fan1 Interrupt Mask Register

Table 87- Fani Interrupt Mask Register

Bit #	Name	R/W	Reset Value	Description
[7:4]	Reserved			
[3]	FFANi_ALIVE_MASK	R/W	1	Front Fani Alive Status Interrupt

				Mask
				0: not mask
				1: mask
			1	Rear Fani Alive Status Interrupt
[0]	RFANi_ALIVE_MASK	R/W		Mask
[2]				0: not mask
				1: mask
		R/W	1	Fani Alive Status Interrupt Mask
[1]	FANi_ALIVE_MASK			0: not mask
				1: mask
	FANi_PRE_MASK	R/W	1	FanTray i Present Interrupt Mask
[0]				0: not mask
				1: mask

5.10. LED

Wedge400 chassis and module cards have status LED to display the information of the system.

5.10.1. LED Controlling

The following diagram shows the LED controlling in system.

Led implenment assignment

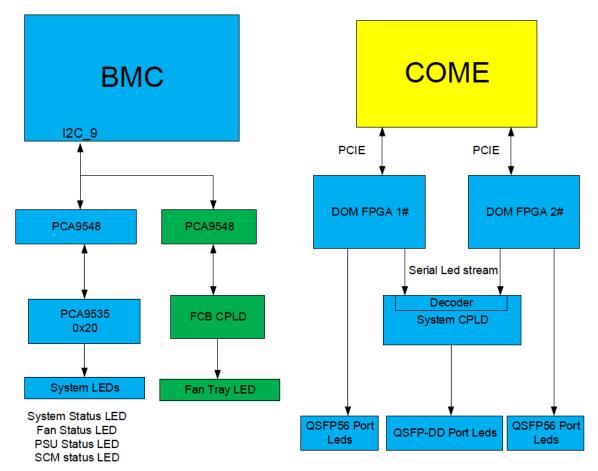


Figure 31:LED Diagram

5.10.2. System Information LED (SIM)

There are four tri-color LED on the top left corner of Wedge400 front panel to display information of the system:

- STS: System Status LED
- FAN: Fan Status LED
- PSU: PSU Status LED
- SCM: System Control Module Status LED

BMC controls the SIM LED through an I2C IO expander on SMB. SIM PCA9535 Bit Mapping:

Bit	Name	R/W	Reset	Description
			Value	

Open Compute Project • Wedge 400 Design Specification

15:14	Reserve		1	NA
13	SCM_BLU_L	R/W	1	SMB LED Blue
	_ _			0: SMB LED Blue is ON
				1: SMB LED Blue is OFF
12	SCM_GRN_L	R/W	1	SMB LED Green
	_			0: SMB LED Green is ON
				1: SMB LED Green is OFF
11	SCM_RED_L	R/W	1	SMB LED Red
	_			0: SMB LED Red is ON
				1: SMB LED Red is OFF
10	PSU_BLU_L	R/W	1	PSU LED Blue
	_			0: PSU LED Blue is ON
				1: PSU LED Blue is OFF
9	PSU_GRN_L	R/W	1	PSU LED Green
				0: PSU LED Green is ON
				1: PSU LED Green is OFF
8	PSU_RED_L	R/W	1	PSU LED Red
				0: PSU LED Red is ON
				1: PSU LED Red is OFF
7:6	Reserve		1	NA
5	FAN_BLU_L	R/W	1	FAN LED Blue
				0: FAN LED Blue is ON
				1: FAN LED Blue is OFF
4	FAN_GRN_L	R/W	1	FAN LED Green
				0: FAN LED Green is ON
				1: FAN LED Green is OFF
3	FAN_RED_L	R/W	1	FAN LED Red
				0: FAN LED Red is ON
				1: FAN LED Red is OFF
2	SYS_BLU_L	R/W	1	SYS LED Blue
				0: SYS LED Blue is ON
				1: SYS LED Blue is OFF
1	SYS_GRN_L	R/W	1	SYS LED Green
				0: SYS LED Green is ON
				1: SYS LED Green is OFF
0	SYS_RED_L	R/W	1	SYS LED Red
				0: SYS LED Red is ON
				ı l

OpenBMC software controls the system information LED per OCP Panel Indication Specification, and the following is the specific behavior in Minipack. Please note that Amber is generated by turning on both Red and Green.

LED	Default Power-On State	Color	Condition
SYS LED	Off	Blue	All FRUs are present, and no FRU-level alarms
		Amber	One or more FRUs are not present; One or more FRUs have alarms
		Blue / Amber flashing (0.5s Blue and 0.5s Amber alternating)	Firmware upgrade in process (BIOS, EEPROM, CPLD, FPGA, etc.)
		Amber flashing	Attention from service technician required
Fan LED	Off	Blue	All fans are present, and are within the normal RPM range
		Amber	One or more fans are not present; One or more fans have out-of-range RPM
PSU LED	Off	Blue	All PSUs are present, and both INPUT OK and PWR OK are asserted for every PSU (accessible through SMB Sys CPLD by BMC)
		Amber	One or more PSUs are not present; One or more PSUs have INPUT OK or PWR OK de-asserted
SCM LED	Off	Blue	No out-of-range voltage and temperature sensors
		Amber	One or more sensors out-of- range

Table 88: System Information LED Definition

5.10.3. Management OOB port LEDs

The OOB RJ45 port on SMB front panel also have typical Active LED and Link status LED to indicate the status of OOB Ethernet:

Link Speed LED, Left of OOB RJ45 port, Green/Amber

Solid Green: 1GbpsSolid Amber: 100MbpsOFF: No link/10Mbps

Activity LED, right of OOB RJ45 port

Blinking Green: TX or RX activity

OFF: no activity

5.10.4. QSFP Port LEDs

There is one LED per QSFP56 port, and two LEDs per QSFP-DD port. The microserver / CPU accesses the port LED control registers in DOM FPGA through PCIe, and DOM FPGA lights up the port LEDs on front panel.

Following is the port LED control design diagram. This design uses time-division-multiplex concept to drive external logic with a serial interface. The external logic could be discrete shifters, or external CPLD, or simply FPGA user logic.

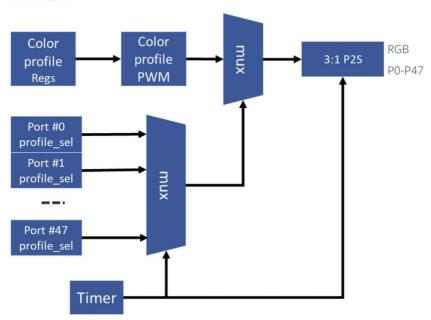


Figure 32:Port LED Control Path

Here is the expected port LED behavior under micro-server/DOM FPGA's control.

LED	Default	Color	Condition		
	Power-On				
	State				
Port	Rotating	Blue	Link up		
LED	colors	Amber	Optic transceiver present but link		
			down		
		Amber flashing	Attention from service technician		
			required		
		Off	Optic transceiver not present		

Table 89: Port LED Behavior

5.10.4.1. Background of Adding LED button

W400 is designed with 2 LEDs per QSFP-DD port, and 1 LED per QSFP port on the front panel.

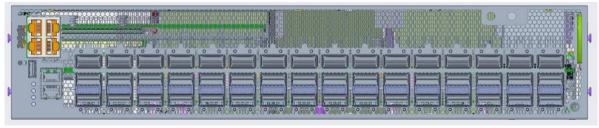


Figure 33:Front Port View

5.10.4.2. LED button

There is an LED Select buttom and LED indicating the LED modes.

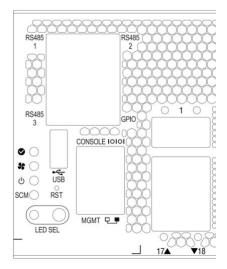


Figure 34:Silkscreen on LED SEL and LED button

6. Modules Interfaces

Wedge400 has the following components:

- Switch Main Board (SMB)
- System Controller Module (SCM)
- Fan Control Module (FCM)
- Power Distribution Board(PDB)
 - Power Distribution Board Top (PDB-T)
 - Power Distribution Board Bottom (PDB-B)
- Power Supply Unit (PSU)
 - o AC/DC: AC PSU
 - o DC/DC: DC PEM
- Fan Tray Unit(FAN)
 - o 80mm x 80mm x80mm Fan tray FRU

Here are the descriptions of the interfaces between modules.

6.1. Interfaces between SCM and SMB

Signal definitions/mappings:

6.2. Interfaces between FMC and SMB

Signal definitions:

	MPN	Vendor								
FCB signal	501190-2017	Molex								
FCB power	449141201	Molex								
Signal										
Pin number	1	3	5	7	9	11	13	15	17	19
Signal name	Gnd	FCM_SCL	FAN_ALARM	CARD_PRESENT	Gnd	FCM_SEL	FCM_TCK	FCM_TDO	3R3V_EN	NC
Signal name	Gnd	FCM_SDA	FCM_PCA9548_RST	FCM_CPLD_RST	Gnd	FCM_TMS	FCM_TDI	Gnd	FCM_Hitless	NC
Pin number	2	4	6	8	10	12	14	16	18	20
Power										
Pin number	1	2	3	4	5	6				
Signal name	12V	12V	12V	GND	GND	GND				
Signal name	12V	12V	12V	GND	GND	GND				
Pin number	7	8	9	10	11	12				

6.3. Interfaces between PDB and SMB

Signal definitions:

	MPN	Vendor													
PDB_T signal	501190-2017	Molex													
PDB_T power	C10-761044-000	AMPHENOL													
SMB signal to PDB_T	501190-2017	Molex													
SMB signal to PDB_B	501190-3017	Molex													
SMB power	C10-760262-000	AMPHENOL													
PDB_B signal	501190-3017	Molex													
PDB_B power	C10-760246-000	AMPHENOL													
Pin number	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29
Signal name	PSU_I2C_SCL	PSU_ALERT_L	PSU_ACOK	PSU_L1_ON	V_SENSE	ISHARE	Gnd	Gnd	3.3V_SBY	3.3V_SBY	NC	NC	NC	NC	NC
Signal name	PSU_I2C_SDA	PSU_PWROK	PSU_PRNST_N	Gnd	V_SENSE_R	Gnd	Gnd	Gnd	3.3V_SBY	3.3V_SBY	NC	NC	NC	NC	NC
Pin number	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30

6.4. Interfaces between Rackmon board and SMB

Signal definitions:

6.5. Interfaces between Timing board and SMB

Signal definitions:

	MPN	Vendor	
SMB	61082-042422LF	FCI	
Timing board	TBD	FCI	
Signal name	Pin num	ber	Signal name
XP12R0V	1	2	XP12R0V
GND	3	4	GND
XP3R3V	5	6	XP3R3V
XP3R3V	7	8	XP3R3V
GND	9	10	GND
PTP_BMC_SCL	11	12	PTP_SPI_CS1
PTP_BMC_SDA	13	14	PTP_SPI_CS2
GND	15	16	GND
PTP_RESET	17	18	PTP_SPI_MISO
PTP_PRESENT	19	20	PTP_SPI_MOSI
GND	21	22	PTP_SPI_SCK
DPLL_REF_CLK_P	23	24	GND
DPLL_REF_CLK_N	25	26	PTP_FPGA_CLK_4K
GND	27	28	PTP_FPGA_CLK_1PPS
NC	29	30	GND
NC	31	32	GND
GND	33	34	PTP_FPGA_CLK_25M
L1_RCVRD_CLK	35	36	NC
GND	37	38	GND
L1_RCVRD_CLK_BKUP	39	40	NC

7. Transceivers and cables

100G optic

- QSFP28 CWDM4 100G transceiver (MSA)
- QSFP28 LR4/LR4-lite 100G transceiver (IEEE)
- QSFP28 SR4 100G transceiver (IEEE)
- 100G DAC Cable
- QSFP28 100GE to QSFP28 100GE cable, 1M, 2M, 3M, 3.5M
- QSFP28 100GE to 2 QSFP28 50GE split cable, aka Y-cable, 1M, 2M, 3M, 3.5M
- QSFP28 100GE to 4 SFP28 25GE fanout cable, 1M, 2M, 3M, 3.5M

200G optic

- QSFP56 FR4 200G transceiver
- QSFP56 200G to QSFP56 200G cable, 1M, 1.5M, 2M

400G optic

QSFP-DD FR4 400G transceiver

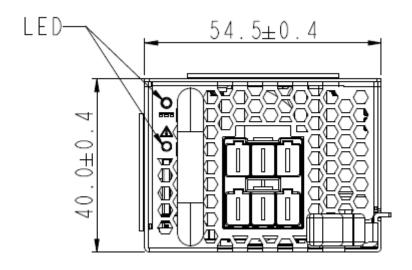
8. Wedge400 Power and Mechanical

Wedge400 has AC version and DC version. The DC version is based on 12V ORv2 power supply.

8.1. DC/DC Power Extension Module (PEM)

Wedge400 has 12V DC PEM to support ORv2 rack installation.

Hot-swappable	Yes
Load-sharing	No
Efficiency Requirement	90+% across full load range
Input characteristics	DC: 11.8 – 12.8 Vdc
Input connector	MiniELCON PN 2204535-1
Output characteristics	Primary 12 Vdc, at rated power output Rated power for primary 12 Vdc shall be follow SKU(Shelf rack power Unit) Standby 3.3 Vdc, +/- 5%, 2A
Hold up time	N/A
LED	Blue Amber Error/Failure/Bad
Air flow	Front to back
Output control	Need provide a mechanism for primary 12 Vdc shutdown by the host software. The 3.3 Vdc standby power shall always be present
Status report	output indicating status of the 12 Vdc output
Monitor and control	I2C / PMBus interface for software monitoring and control Need support following parametric data: Main DC output voltage, current, and power Auxiliary DC output voltage, current, and power PEM temperature sensor(s)


Here is the signal definition on the DC PEM connector:

Pin	Signal Name	Туре	Vlow_max	Vhigh_min	Function	comments
Power						
1-5	GND					
6-10	+12V					
Signal						
A1	3.3VSB					
B1	3.3VSB					
C1	3.3VSB					
D1	3.3VSB					
E1	3.3VSB					
A2	SGND					
B2	SGND					
C2	N/C	-	-	-	-	-
D2	N/C	-	-	-	-	-
E2	N/C	-	-	-	-	-

Open Compute Project • Wedge 400 Design Specification

A3	N/C	-	-	-	-	-
В3	N/C					
C3	SDA	Bi-directional	0.4V	2.1V	I2C data	Pull up resistor is 10Kohm
D3	N/C	-	-	-	-	-
E3	N/C	-	-	-	-	-
A4	SCL	Input	0.4V	2.1V	I2C clock	Pull up resistor is 10Kohm
B4	PSON_L	Input / Active low	0.8V	2.0V	Enable / Disable Main Output	Logic "Low" – turn ON Logic "High" – turn Off Pull up resistor is 10kohm
C4	SMB_ALERT_L	Output / Active low	0.4	2.4	SM Alert	Logic "Low" – Fault or Warning Logic "High" – OK
D4	N/C					
E4	VINOK_H(ACOK_H)	Output / Active high	0.4V	2.4V	Input Power OK	Logic "High" – Output is OK Logic "Low" – Output is not OK Pull up resistor is 10Kohm
A5	PSKILL_H	Input/ Active low	0.8V	2.0V	Control the PSU	Logic "Low" – PSU OK Logic "High" – PSU shut down Pull up resistor is 10Kohm
B5	N/C	-	-	-	-	-
C5	PWOK_H	Output / Active high	0.4V	2.4V	Output Power OK	Logic "High" – Output is OK Logic "Low" – Output is not OK Pull up resistor is 10kohm
D5	N/C					
E5	SGND					

LED definition:

DCPEM CONDITION	BLUE (OK) LED STATUS	AMBER (FAIL) LED STATUS
12V Input and output OK	ON	OFF
No 12V input	OFF	OFF
DCPEM failure (no 12V output)	OFF	ON

8.2. AC/DC PSU

Wedge400 uses Delta DDM1500BH12A3F AC power supply unit (PSU) to provide power to the chassis. There are 2 PSU in the chassis. Each PSU is rated at 1500W with 12V output. The power system of Wedge400 is load sharing of two PSU, usually it is used as 1+1 PSU redundancy, one PSU connect to one AC feed and the other PSU connect to redundant feed, providing feed redundancy. The following Figure shows the AC PSU from Delta.

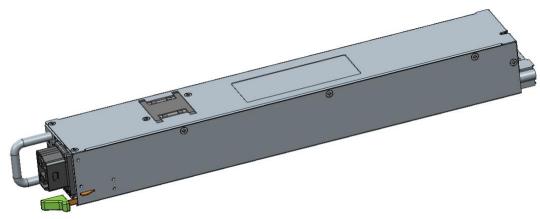


Figure 35:DDM1500BH12A3F 1.5KW PSU

Power Supply Connector: Tyco Electronics P/N 2-1926736-3 (NOTE: Column 5 is recessed (short pins))

Mating Connector: Tyco Electronics P/N 2-1926739-5 or FCI 10108888-R10253SLF

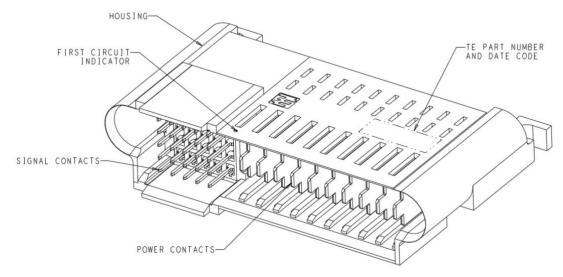
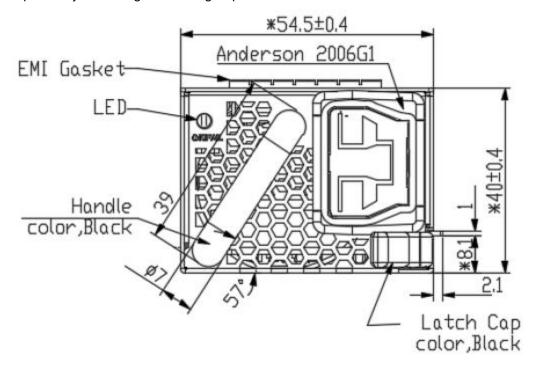


Figure 36:PSU power output connector


	1	2	3	4	5	PGND	V1
Α	VSB	SGND	APS	SCL	PSKILL_H		
В	VSB	SGND	N/C	PSON_L	ISHARE		
С	VSB	HOTSTAN DBYEN_H	SDA	SMB_ALER T_L	PWOK_H	1, 2,	6, 7,
D	VSB	VSB_SENS E_R	V1_SENSE _R	N/C	VSB_SEL	3, 4, 5	8, 9, 10
Е	VSB	VSB_SENS E	V1_SENSE	ACOK_H	PRESENT_ L		

Signal definition:

Pin	Signal Name	Туре	Vlow_max	Vhigh_min	Function	comments
Power						
1-5	GND					
6-10	+12V					
Signal						
A1	3.3VSB					
B1	3.3VSB					
C1	3.3VSB					
D1	3.3VSB					
E1	3.3VSB					
A2	SGND					
B2	SGND					
C2	HOTSTANDBYEN_H	Input/ Active low	0.8V	2.0V	Control the Smart standby mode	Logic "Low" – normal redundancy mode Logic "High" – Smart standby mode Pull up resistor is 10kohm
D2	Analog	-	-	Standby output remote positive sense line	Analog	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
E2	VSB_SENSE	Analog	-	-	Standby output remote positive sense line	
A3	APS	Input	-	-	The I2C address	It is connected with resistor to select the address Pull up resistor is 12.1kohm
B3	N/C					
C3	SDA	Bi-directional	0.4V	2.1V	I2C data	Pull down resistor is 47.5ohm
D3	V1_SENSE_R	Analog	-	-	Main output remote negative sense line	
E3	V1_SENSE	Analog	-	-	Main output remote positive sense line	
A4	SCL	Input	0.4V	2.1V	I2C clock	Pull down resistor is 47.5ohm
B4	PSON_L	Input / Active low	0.8V	2.0V	Enable / Disable Main Output	Logic "Low" – turn ON Logic "High" – turn Off Pull up resistor is 10kohm
C4	SMB_ALERT_L	Output / Active low	0.4	2.4	SM Alert	Logic "Low" – Fault or Warning Logic "High" – OK
D4	N/C					•
E4	ACOK_H	Output / Active high	0.4V	2.4V	Input Power OK	Logic "High" – Output is OK Logic "Low" – Output is not OK Pull up resistor is 10kohm
A5	PSKILL_H	Input/ Active low	0.8V	2.0V	Control the PSU	Logic "Low" – PSU OK Logic "High" – PSU shut down Pull up resistor is 47.5kohm
B5	ISHARE	Analog	-	-	Main output current share bus	
C5	PWOK_H	Output / Active high	0.4V	2.4V	Output Power OK	Logic "High" – Output is OK Logic "Low" – Output is not OK Pull up resistor is 10kohm
D5	VSB_SEL	Input	-	-	Select the standby output	NA
E5	PRESENT_L	Output / Active low	0.4V	-	PSU present	Connected to SGND inside PSU

LED definition:

Open Compute Project • Wedge 400 Design Specification

Event	Blue LED Status	Amber LED Status
12V main on and in voltage regulation band (Active mode)	Solid Blue	OFF
12V main off (Standby mode)	1HZ Blinking	OFF
No AC input power to any of the system power supplies	OFF	OFF
No AC input power, but other PSU in the system operating	OFF	1HZ Blinking
F Warning event (Output OCW/OTW/ Fan fail)	OFF	1HZ Blinking
Fault event (Input OVP/ Output OVP, UVP, OCP/ OTP/ Other internal fault)	OFF	Solid Amber
FW update	OFF	2HZ Blinking

8.3. Power Circuits Design Target

Here is the power estimation which is for DC/DC design to support worst case. It's target for board DC/DC design, not for thermal design.

Open Compute Project • Wedge 400 Design Specification

	Component	Qty		Volta	ge						
	Component	Qty	12	5	3.3	1.2					
	COME module	1.00	5.00	2							
SCM board	CPLD	1.00	0.00		0.15						
SCIVI DOARD	M.2	2.00	0.00		2.5						
	Phy BCM54616S	1.00	0.00		0.35	0.24					
	Other	1.00	0.00		0.5						
	Total(W)	90.09	5	2	6	0.24					
	Component	Qty					Voltage				
	Component	Qty	5	3.3	2.5	1.8	1.2	1.15	1	0.8	0.8
	TH3	1		0.74		0.38	5.8			397	79
	Aspeed 2520	1		0.5			0.7	0.8			
	DDR 4	1			0.02		0.31				
	DOM FPGA	2		0.37		0.2	0.1		3		
	QSFP-DD	16		4.24							
	QSFP56	32		2.12							
i(include Rack M	SFP GE	1		0.5							
I(include Rack IVi	PWR CPLD	1		0.1							
	System CPLD	1		0.2							
	BCM54616S	2		0.35			0.24				
	EMMC	1		0.1							
	BCM5389	1			0.04		0.812				
	USB hub	1		0.11							
	USB	1	1								
	Other	1		1							
	Total(W)	867.46	1	140.37	0.06	0.78	8.302	0.8	6	397	79
	Component	Qty	Voltage								
	Component	ď	3.3								
FCB board	FCB CPLD	1	0.15								
, ob board	FAN	4	23.6								
	Others	1	1								
	Total(W)	81.68	24.75								
System Total P	ower Consumtion	1154.69									

8.4. Power Tree

Here is the power tree estimated from 12V main input to low voltage power rails:

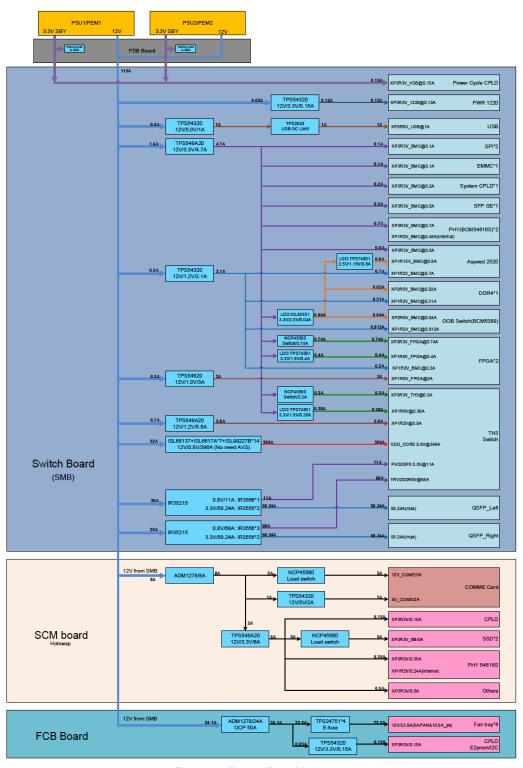


Figure 37:Power Tree Diagram

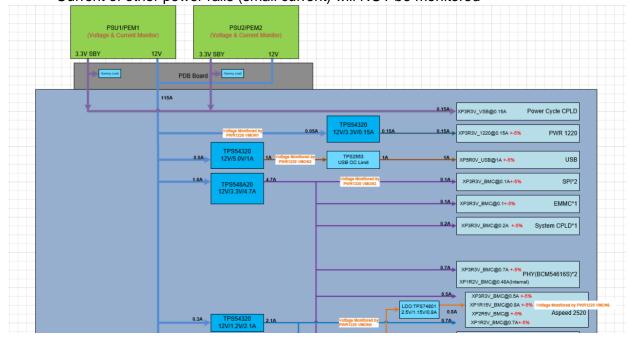
6.5. Voltage Detection Sensors

There are 9 Low Voltage Monitor Inputs which can accept voltage range between 0.075V and 5.734V and 1 High Voltage Monitor Inputs which can accept voltage range between 0.3V and 13.2V.

There are 8 power rails on board and 2 power rails from PSU. The detail channel mapping is shown below.

Table 90 ispPAC_POWR1220AT8 IO Assignment

IO#	Ю	Signal Name	Function Description	
VMON1 IN			Detect POWR 1220A self voltage is good	
VIVIOIVI			or not	
VMON2	IN	XP5R0V	Detect USB XP5R0V is good or not	
VMON3	IN	XP3R3V_BMC	Detect BMC XP3R3V is good or not	
VMON4	IN	XP2R5V_BMC	Detect BMC XP2R5V is good or not	
VMON5	IN	XP1R2V_BMC	Detect BMC XP1R2V is good or not	
VMON6	IN	XP1R15V_BMC	Detect BMC XP1R8V is good or not	
VMON7	IN	XP1R8V_FPGA	Detect FPGA XP1R8V is good or not	
VMON8	IN	PVDD0P8	Detect TH3 QSFP 0.8V is good or not	
VMON9	IN	XP3R3V_TH3	Detect TH3 XP3R3V is good or not	
VMON10	IN	VDD_CORE	Detect TH3 CORE 0.8V is good or not	
VMON11	IN	TRVDD0R8V	Detect TH3 TRVDD0R8V is good or not	
VMON12	IN	XP3R3V_RIGHT	Detect QSFP XP3R3V is good or not	
OUT 1	OUT	VDCDOV LICE EN	Enable signal for USB XP5R0V regulator,	
0011	001	XP5R0V_USB_EN	high active	
OUT 2	OUT	PWR1220_RESET_PRST	RESET POWR1220	
OUT 3	OUT	BMC_P1220_SYS_OK	Power good signal – POWR1220_SYS	
OUT 4	OUT	N/A		
OUT 5 OUT		OUT XP3R3V_BMC_EN	Enable signal for BMC XP3R3V regulator,	
0013	OUT APSR3V_BIVIC_EN		high active	
OUT 6	OUT 6 OUT XP1R0V_FPGA_EN		Enable signal for FPGA XP1R0V regulator,	
0010	001	XI IKOV_II GA_EK	high active	
OUT 7	OUT	XP2R5V_BMC_EN	Enable signal for BMC XP2R5V regulator,	
0017	001	XI ZIXOV_BIVIO_EIV	high active	
OUT 8	OUT	XP1R2V_BMC_EN	Enable signal for BMC XP1R2V regulator,	
0010	001	XI INZV_BIVIO_EIV	high active	
OUT 9 OUT		XP1R8V_FPGA_EN	Enable signal for FPGA XP1R8V regulator,	
	001	7 11.0 V_11 O/_E14	high active	
OUT 10	OUT 10 OUT XP1R15V_BMC_EN		Enable signal for BMC XP1R5V regulator,	
			high active	
OUT 11	OUT	BMC_POWER_OK	Power good signal - BMC	
OUT 12	OUT	XP3R3V_FPGA_EN	Enable signal for FPGA XP3R3V regulator,	
	_ .		high active	


Open Compute Project • Wedge 400 Design Specification

OUT 13	OUT	XP3R3V_RL_EN	Enable signal for QSFP XP3R3V regulator, high active
OUT 14	OUT	XP3R3V_TH3_EN	Enable signal for TH3 XP3R3V regulator, high active
OUT 15	OUT	VDD_TH3_EN	Enable signal for TH3 VDD_CORE regulator, high active
OUT 16	OUT	XP1R2V_TH3_EN	Enable signal for TH3 XP1R2V regulator, high active
OUT 17	OUT	XP1R8V_TH3_EN	Enable signal for TH3 XP1R8V regulator, high active
OUT 18	OUT	XP0R8V_PVDD_EN	Enable signal for QSFP PVDD0P8V regulator, high active
OUT 19	OUT	XP0R8V_TRVDD_EN	Enable signal for TH3 TRVDD0R8V regulator, high active
OUT 20	OUT	TH3_POWER_OK	Power good signal – TH3

6.6. Current Detection Sensors

The current detection on Wedge400 will be categorized as follows.

- Current of 12V primary power can be read from PSU through I2C
- Currents of switch core/analogy power rails (high current) can be read from PWM controllers through I2C
- Current of QSFP-DD 3.3V can be read from PWM controller through I2C
- Current of other power rails (small current) will NOT be monitored

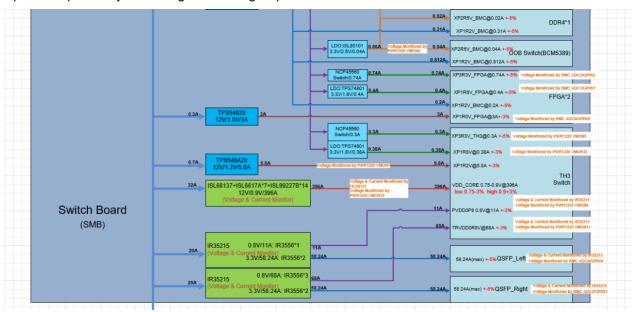


Figure 38:Power Monitor Diagram

9. Thermal design

The thermal design of Wedge400 is optimized for better thermal performance to support 55C CWDM4 100G optics, 65C FR4 200G optics and 65C FR4 400G optics, which are specified by Meta.

Totally there are 4 fan-tray in Wedge400 chassis, each fan-tray has one 80mm x 80mm x 80mm CR fan. The FCM (Fan Control Module) supports 4 fan-tray.

9.1. Fan tray

Wedge400 chassis supports four fan-tray with 3+1 redundancy.

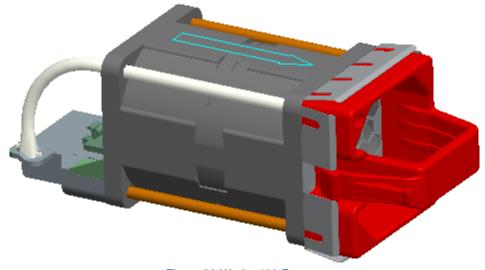


Figure 39:Wedge400 Fan-tray

The following Sanyo Denki CR fan is recommended.

- Sanyo Denki: 9CRA0812P8G001 (80mm x 80mm x 80mm)
- 63.6W Max
- Rated speed: 12000 inlet, 11300 outlet
- Max Airflow: 4.5 M3/min, or 158.9CFM
- Max Static Pressure: 4.62 inchH2O

Figure 40:Wedge400 fan

80mm CR fan 9CRA0812P8G001 from Sanyo Denki has the following technical parameters

9CRA0812P8G001	
Item	Description
Rated voltage	12 VDC
Operating voltage	7.0 ~ 13.2 VDC
Input current	5.30A
Input power	63.6W
speed	Front 12000, Rear 11300 RPM +/-10%
Max Air flow at zero static	4.50m3/min, or 158.9CFM
Max Air Pressure	4.62 in-H2O
acoustic	76 dB-A
Lead Wire	

Table 3: Sanyo Denki fan 9CRA0812P8G001

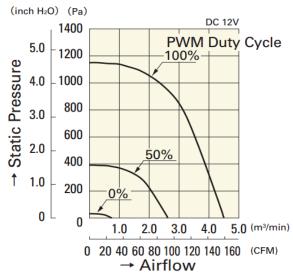


Figure 41:PQ Curve of CR Fan 9CRA0812P8G001

9.2. Temperature Sensors

Each module card can have multiple temperature sensors to monitor temperature. Temperature information needs to be reported to the BMC via system management I2C bus.

Additionally, over-temperature thresholds are configurable, and an alert mechanism is provided to enable thermal shutdown and / or an increase in airflow. The sensors are accurate to +/-2C. The ambient temperature sensor can be a TMP75 from Texas Instruments or an equivalent part from other vendors. Its I2C address can be set to 0x98 to 0x9F. 8 TMP75 temperature sensors can share one i2c bus.

BMC Channel	I2C switch address	witch cha	Device type and Address	Description
12c_3	0x70	2	LM75, 0x4c	Sensor on SCM. Not need for FSC at this moment
I2c_3	0x70	2	LM75, 0x4d	Sensor on SCM. Not need for FSC at this moment
12c_4	NA	NA	LM75, 0x48	system inlet sensor(left)
12c_4	NA	NA	LM75, 0x49	TH3 outlet sensor
12c_4	NA	NA	LM75, 0x4A	SMB outlet sensor
12c_4	NA	NA	LM75, 0x4B	system inlet sensor(right)
I2c_4	NA	NA	TPM421, 0x4C	System left side. Not need for FSC at this moment
I2c_4	NA	NA	TPM421, 0x4D	system right side. Not need for FSC at this moment
I2c_4	NA	NA	TPM422, 0x4F	TH3 internel sensor.
I2c_12	0x76	3	LM75, 0x48	system outlet sensor(left)
I2c_12	0x76	3	LM75, 0x49	system outlet sensor(left)

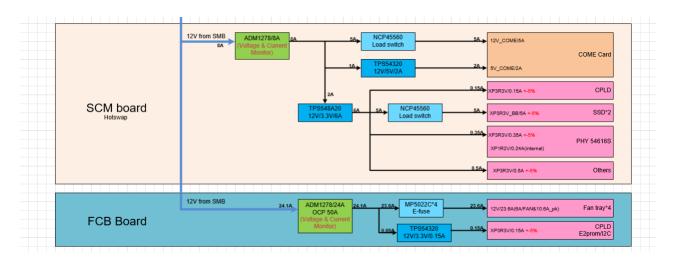


Figure 42:Temperature I2C Access

10. Regulatory Compliance Requirements

Every ODM engaged with Meta to develop a L10 product to be used in our Data Center's infrastructure must meet the following regulatory compliance requirements. Reports must be from labs accredited to a current version of IEC 17025. The reports and certificates must name the ODM as the applicant.

10.1. CE Declaration to the following Regulatory Directives by ODMs

EMC Directive 2014/30/EU Low Voltage (LVD) Directive 2014/35/EU

10.2. Safety Certification

CB certificate/report to IEC 62368-1 including all national deviations
CB certificate/report to IEC/EN 60950-1 including all national deviations
UL/CSA/IEC/EN 60950-1 with all latest amendments
UL/IEC 62368-1 with all latest amendments
CNS14336 Taiwan BSMI safety regulation
EN 60825-1 Safety of Laser products – part 1
UL 94-V0 Flammability rating

10.3. EMC Certification

Every ODM engaged with Meta to develop a L10 product to be used in our Data Center's infrastructure must meet the following regulatory compliance requirements. Reports must be from labs accredited to a current version of IEC 17025. The reports and certificates must name the ODM as the applicant. EMC certification and report:

FCC Part 15 (Class A)

ICES-003 (Canada) Class A

EN55032 (Europe) Class A

CISPR32 (International) Class A

AS/NZS CISPR32 (Australia and New Zealand) Class A

VCCI CISPR 32 (Japan) Class A

CNS 13438 (Taiwan) Class A

EN61000-3-2

EN61000-3-3

EN55024

EN 61000-4-2 ESD

EN 61000-4-3 Radiated Immunity

EN 61000-4-4 EFT

EN 61000-4-5 Surge

EN 61000-4-6 Low Frequency Conducted Immunity

EN 61000-4-11 Voltage Variations and Dips

10.4. Immunity Levels

The ODM must strive to design to the META Goal at the start and during the project. The design team will decide if levels below the goal are acceptable. Off the shelf power supplies must meet the required level at a minimum.

	Network Equipment							
Immunity Description		Standard Criteria (Required)	FB Criteria (Goal)	Standard Level (Required)	FB Level (Goal)	Remarks		
IEC 61000-4-2	Electrostatic Discharge (ESD)	В	А	4 kV Cont. / 8 kV Air	8 kV Cont. / 15 kV Air	Criteria A (FB Goal) is highly desirable for any level		
IEC 61000-4-3	Radiated Immunity	Α	Α	3 V/m	10 V/m	For communication cables >3 meters		
IEC 61000-4-4	FFT	В	В	0.5 kV		Ports: Signal &Telecom (>3 meters), DC power input		
IEC 61000-4-4	EFT	В	В	1 kV		Ports: AC power input & AC/DC Converter		
		С	Α	1 kV		Ports: Signal and Telecom connected to outdoor cables		
IEC 61000-4-5	Surges	В	A	0.5 kV		Ports: DC power input		
				1 kV L-L / 2 kV L-GND		Ports: AC power input & AC/DC Converter		
IEC 61000-4-6	Conducted Immunity	А	А	3 V	10 V	Ports: Signal &Telecom (>3 meters), AC and DC power input		
IEC 61000-4-8	Magnetic Field	Α	Α	1 A/m		Only EUT containing devices susceptible to magnetic fields		
	Voltage Dips	В	В	>95% Reduction		Ports: AC power input & AC/DC Converter (0.5 Period)		
IEC 61000-4-11	voitage Dips	С	С	30% Reduction		Ports: AC power input & AC/DC Converter (25 Periods)		
	Voltage Interruptions	С	С	>95% Reduction		Ports: AC power input & AC/DC Converter (250 Periods)		

10.5. Sound

The ODM must strive to design to the META Goal at the start and during the project. The design team will decide if levels above the goal are acceptable. The sound power level limits apply to the normal operating conditions where the system is configured and equipped in its deployed state with the worst case configuration to produce the loudest noise. Maintenance conditions, open covers, are not considered normal conditions and do not need to be measured. Sound from alarms does not need to be measured. Maximum fan speed expected under normal operation should be measured.

Network Equipment					
OHSA (Required) Directive 2003/10/EC (Goal) FB Design Goal Remarks					
Sound Limit	85	80	78	Under normal operation at 25 °C, the system must not produce a A-weighted sound power level above the required limit. The FB design goal should be targeted during development of the product. The Directive goal represents the limit that requires hearing protection to be provided to our Data Center Staff in Europe. The ODM must provide the result of the formal testing.	

10.6. Environmental Compliance

Every ODM engaged with Meta to develop a L10 product to be used in our Data Center's infrastructure must meet the following environmental compliance requirements. Reports must be from labs accredited to a current version of IEC 17025. Environmental Compliance reports:

RoHS 2 REACH (SVHC & Annex 17)

WEEE

POP Regulation

Prop 65

Batteries Directive

Halogen-free IEC/EN 61249-2-21 (900 ppm Br or Cl, 1500 ppm combined)

Phthalate (DEHP, DBP, DiBP, BBP)-free (1000 ppm)

Arsenic-free (1000 ppm)

The Packaging and Packaging Waste Directive 94/62/EC

CE Declaration to the following environmental Directives by ODM:

RoHS Directive 2011/65/EU

11. Labels and Markings

11.1. PCBA Labels and Markings

Wedge400 PCBAs shall include the following labels on the component side of the boards. The labels shall not be placed in such a way that may cause them to disrupt the functionality or the airflow path of the system.

Table 91 PCBA Label Requirements

Description	Туре	Barcode Required?
Safety markings	Silkscreen	No
Vendor P/N, S/N, REV (revision would increment for any approved changes)	Adhesive label	Yes
Vendor logo, name & country of origin	Silkscreen	No
PCB vendor logo, name	Silkscreen	No
Meta P/N	Adhesive label	Yes
Date code (industry standard: WEEK/YEAR)	Adhesive label	Yes
DC input ratings	Silkscreen	No
RoHS compliance	Silkscreen	No
WEEE symbol: The motherboard will have the crossed out wheeled bin symbol to indicate that it will be taken back by the manufacturer for recycling at the end of its useful life. This is defined in the European Union Directive 2002/96/EC of January 27, 2003 on Waste Electrical and Electronic Equipment (WEEE) and any subsequent amendments.	Silkscreen	No

11.2. Chassis Labels and Markings

TBD

12. References (OPTIONAL)

- [1] "Title", publication year, publication journal/conference/standard, volume, pages, link to publication if available
- [2] OCP Profiles https://github.com/opencomputeproject/OCP-Profiles
- [3] Redfish Interop Validator https://github.com/DMTF/Redfish-Interop-Validator
- [4] Redfish Service Validator https://github.com/DMTF/Redfish-Service-Validator
- [5] Redfish Service Conformance Check https://github.com/DMTF/Redfish-Service-Conformance-Check

13. References (OPTIONAL)

- [1] "Title", publication year, publication journal/conference/standard, volume, pages, link to publication if available
- [2] OCP Profiles https://github.com/opencomputeproject/OCP-Profiles
- [3] Redfish Interop Validator https://github.com/DMTF/Redfish-Interop-Validator
- [4] Redfish Service Validator https://github.com/DMTF/Redfish-Service-Validator
- [5] Redfish Service Conformance Check https://github.com/DMTF/Redfish-Service-Conformance-Check

Appendix A - Requirements for IC Approval

[Note to author: appendix A must be completed by the Contributor of Baseline Specification]

List all the requirements in one summary table with links from the sections.

Requirements	Details	Link to which Section in Spec
Contribution License Agreement	Which one?	Link to Sec 1
If OWF CLA, please provide link to OWFa 1.0 Final Spec Agreement. If OCP CLA, please provide link to OCP Hardware Licence of choice.		
Tenets	Which ones? Openness Efficiency Impact Scale	Link to Sec 2
Supplier Requirements:		
Supplier must be an OCP Member.		
Supplier must become an OCP Solution Provider.		
Supplier must provide product based on this spec within 120 days		
Supplier must make product available to the PUBLIC		
Name of Supplier(s)		

Appendix B _ - OCP Supplier Information (to be provided by the Supplier of Product within 120 days)

Your product must apply for OCP Product Recognition within 120 days.

Company: Celestica

Contact Info: William Zhang

Section 701~801, Building 1, 3000 Long dong Ave., Shanghai, 201203, China.

Product Name:

Product SKU#: R1149-F0002-07

Description: Wedge400

OCP Product Recognition:

Please have your supplier complete the following <u>2021 Supplier Requirements</u> before seeking OCP Product Recognition. Insert the completed spreadsheet link in the table below.

For Server Products ONLY:

For OCP Inspired™ Product Recognition, complete the following tabs:

- Supplier Details
- Security bronze level
- HW Mgmt
- BMC (binary)

For OCP Accepted™ Product Recognition:

- Supplier Details
- Open System Firmware
- Security silver/gold level
- HW Mgmt
- BMC (source + binary blobs)

For all other Products:

- Supplier Details
- Security (Bronze for OCP Inspired[™] or Silver/Gold for OCP Accepted[™])
- BMC if applicable

List all the requirements in one summary table with links from the sections.

Requirements	Details	Links
Which Product recognition?	OCP Accepted™ or OCP Inspired™	
If OCP Accepted™, who provided the Design Package?	Meta	

2021 Supplier Requirements for your product(s)		W400 Supplier
--	--	------------------