Universal Quick Disconnect (UQD) Specification
Revision 1.0

Author: Mark Sprenger, Intel Corporation
TABLE OF CONTENTS

1. **LICENSE** .. 3

2. **SCOPE & OVERVIEW** ... 4
 2.1 Terms & Definitions .. 4
 2.2 Key Performance Indicators .. 5

3. **FEATURE & DIMENSIONAL REQUIREMENTS** ... 6
 3.1 Terminations .. 8
 3.2 Latching Requirements ... 8
 3.3 Outer Envelope Requirements .. 8

4. **PERFORMANCE REQUIREMENTS** .. 8
 4.1 Ergonomics Requirements ... 9
 4.2 Shelf & Service Life Requirements .. 9
 4.3 Durability Requirements .. 9
 4.4 Fluid Loss Requirements ... 9
 4.5 Flow Rate, Pressure and Temperature Requirements .. 10

5. **MARKING REQUIREMENTS** .. 11
 5.1 Identification .. 11

6. **WETTED MATERIALS** ... 11

7. **SAFETY AND REGULATORY REQUIREMENTS** ... 11

8. **ACKNOWLEDGEMENTS** ... 11

9. **REFERENCES** ... 12
1. License

Contributions to this Specification are made under the terms and conditions set forth in Open Compute Project Contribution License Agreement (“OCP CLA”) (“Contribution License”) by:

Intel Corporation
2111 NE 25th Avenue
Hillsboro, OR 97124

Usage of this Specification is governed by the terms and conditions set forth in Open Compute Project Hardware License – Permissive (“OCPHL Permissive”).

Note: The following clarifications, which distinguish technology licensed in the Contribution License and/or Specification License from those technologies merely referenced (but not licensed), were accepted by the Incubation Committee of the OCP:

NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED BY OCP “AS IS” AND OCP EXPRESSLY DISCLAIMS ANY WARRANTIES (EXPRESS, IMPLIED, OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO THE SPECIFICATION. NOTICE IS HEREBY GIVEN, THAT OTHER RIGHTS NOT GRANTED AS SET FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD PARTIES WHO DID NOT EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE IMPLEMENTATION OF OR COMPLIANCE WITH THIS SPECIFICATION. OCP IS NOT RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE REQUIRED IN ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK AS TO IMPLEMENTING OR OTHERWISE USING THE SPECIFICATION IS ASSUMED BY YOU. IN NO EVENT WILL OCP BE LIABLE TO YOU FOR ANY MONETARY DAMAGES WITH RESPECT TO ANY CLAIMS RELATED TO, OR ARISING OUT OF YOUR USE OF THIS SPECIFICATION, INCLUDING BUT NOT LIMITED TO ANY LIABILITY FOR LOST PROFITS OR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2. **Scope & Overview**

Scope:

This document defines the technical specifications for the Universal Quick Disconnect (UQD) used in non-combustible single-phase (water/glycol) systems for liquid cooling of electronics.

Overview:

In liquid cooled systems, fluid is transported under pressure within a Technology Cooling System (TCS) fluid loop [1]. The IT equipment loop is joined to the TCS using a fluid connector.

This specification defines the fluid connector as Universal Quick Disconnect (UQD) with interface dimensions for universal interchangeability and defines acceptable performance for a hand-mate, drip-free, hot-pluggable, fluid line connector for use in TCS for electronics. The UQD maintains a leak-tight seal under pressure when coupled and on both sides when decoupled.

2.1 Terms & Definitions

Plug
The male side of the coupling

Socket
The female side of the coupling

Coupled
The state when the plug and socket are fully engaged and locked together

Coupling
The act of connecting the plug and socket together so that they are locked together to join a fluid line.

Cv
Flow coefficient defined as \(C_v = \frac{Q}{\sqrt{\Delta P}} \), where \(Q \) is flow rate in gallons/min (GPM) and \(\Delta P \) is pressure drop in lbs/in\(^2\) (psi) for water at 60 degrees F

Termination
Both plug and socket have terminations on the ends to connect a tube or pipe to the coupling

UQD
Universal Quick Disconnect

Break
Act of de-coupling the plug and socket

Make
Act of coupling the plug and socket such that the pair are fully mated and locked

Universal Quick Disconnect
Fully interchangeable with other plug and socket parts meeting the UQD Requirements of the same nominal size

KPI
Key Performance Indicator

UQD02
Universal Quick Disconnect Dash 02 (1/8”)

UQD04
Universal Quick Disconnect Dash 04 (1/4”)

UQD06
Universal Quick Disconnect Dash 06 (3/8”)

UQD08
Universal Quick Disconnect Dash 08 (1/2”)

9/4/2020
2.2 Key Performance Indicators

The following Key Performance Indicators (KPI's) are measured parameters that are key in defining the appropriate part selection. Suppliers should have data available to address the KPI's below:

- Flow Rating
- Temperature Rating
- Pressure Rating
- Burst Pressure Rating
- Fluid loss on disconnect
- Cv
3. Feature & Dimensional Requirements

Physical features of the socket shall conform to the dimensions shown in Figure 2 UQD Socket Dimensions and given in Table 1 UQD Socket Dimensional Specification. Physical features of the plug shall conform to the dimensions shown in Figure 3 UQD Plug Dimensions and given by Table 2 UQD Plug Dimensional Specification. Where no dimension is given the geometry is left to the discretion of the manufacturer and should consider end user (datacenter environment) requirements for fit and function.

![Figure 2 UQD Socket Dimensions](image)

Table 1 UQD Socket Dimensional Specification

<table>
<thead>
<tr>
<th>Dimension (see Fig 2 above)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>E</th>
<th>F</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance value</td>
<td>MIN</td>
<td>±0.025</td>
<td>±0.025</td>
<td>Max</td>
<td>Min</td>
<td>±0.10</td>
</tr>
<tr>
<td>UQD02</td>
<td>Ø11.25</td>
<td>Ø6.71</td>
<td>Ø3.63</td>
<td>13.7</td>
<td>12.8</td>
<td>3.3</td>
</tr>
<tr>
<td>UQD04</td>
<td>Ø15.65</td>
<td>Ø11.15</td>
<td>Ø7.14</td>
<td>18.1</td>
<td>16.6</td>
<td>4.7</td>
</tr>
<tr>
<td>UQD06</td>
<td>Ø18.85</td>
<td>Ø14.38</td>
<td>Ø9.47</td>
<td>18.8</td>
<td>17.3</td>
<td>5.4</td>
</tr>
<tr>
<td>UQD08</td>
<td>Ø22.05</td>
<td>Ø17.56</td>
<td>Ø10.75</td>
<td>20.0</td>
<td>18.5</td>
<td>6.6</td>
</tr>
</tbody>
</table>

Dimensions are in millimeters.
Figure 3 UQD Plug Dimensions

Table 2 UQD Plug Dimensional Specification

<table>
<thead>
<tr>
<th>Dimensions (See figure 3 above)</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance Value</td>
<td>±0.025</td>
<td>±0.025</td>
<td>MIN</td>
<td>±0.3</td>
<td>±0.025</td>
<td>MAX</td>
<td>±0.1</td>
<td>±0.06</td>
<td>±0.3</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>UQD02</td>
<td>ø11.0</td>
<td>ø6.65</td>
<td>21.0</td>
<td>11.0</td>
<td>ø3.73</td>
<td>3.0</td>
<td>15.5</td>
<td>14.8</td>
<td>19.4</td>
<td>ø6.78</td>
<td>7.1</td>
</tr>
<tr>
<td>UQD04</td>
<td>ø15.4</td>
<td>ø11.07</td>
<td>29.0</td>
<td>16.1</td>
<td>ø7.24</td>
<td>4.0</td>
<td>21.5</td>
<td>20.7</td>
<td>26.5</td>
<td>ø11.2</td>
<td>10.4</td>
</tr>
<tr>
<td>UQD06</td>
<td>ø18.6</td>
<td>ø14.3</td>
<td>32.5</td>
<td>19.6</td>
<td>ø9.75</td>
<td>5.0</td>
<td>25.0</td>
<td>24.2</td>
<td>30.0</td>
<td>ø14.2</td>
<td>13.2</td>
</tr>
<tr>
<td>UQD08</td>
<td>ø21.8</td>
<td>ø17.48</td>
<td>36.5</td>
<td>23.6</td>
<td>ø11.17</td>
<td>6.0</td>
<td>29.0</td>
<td>28.2</td>
<td>34.0</td>
<td>ø17.4</td>
<td>16.0</td>
</tr>
</tbody>
</table>

Dimensions are in millimeters.
In the ball contact surface area, identified in Figure 3 UQD Plug Dimensions, the minimum hardness is 24HRC.
3.1 Terminations
Termination options are left to the discretion of the manufacturer. At a minimum, a barbed termination on the socket and a straight thread o-ring boss (ORB) termination on the plug shall be available in the sizes described in Table 3 UQD Terminations.

<table>
<thead>
<tr>
<th>Size</th>
<th>Socket</th>
<th>Plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>UQD02</td>
<td>Straight, Barbed to mate with ¼” reinforced EPDM tubing (ex. Parker 804-4-RL)</td>
<td>Straight, O-Ring Boss, Stud End -04 PER ISO 11926-3 to mate with port per ISO 11926-1 -4</td>
</tr>
<tr>
<td>UQD04</td>
<td>Straight, Barbed to mate with 3/8” reinforced EPDM tubing (ex. Parker 804-6-RL)</td>
<td>Straight, O-Ring Boss, Stud End -06 PER ISO 11926-3 to mate with port per ISO 11926-1 -6</td>
</tr>
<tr>
<td>UQD06</td>
<td>Straight, Barbed to mate with ½” reinforced EPDM tubing (ex. Parker 804-8-RL)</td>
<td>Straight, O-Ring Boss, Stud End -08 PER ISO 11926-3 to mate with port per ISO 11926-1 -8</td>
</tr>
<tr>
<td>UQD08</td>
<td>Straight, Barbed to mate with 5/8” reinforced EPDM tubing (ex. Parker 804-10-RL)</td>
<td>Straight, O-Ring Boss, Stud End -10 PER ISO 11926-3 to mate with port per ISO 11926-1 -10</td>
</tr>
</tbody>
</table>

Terminations shall meet the operating and burst pressure performance requirements specified in this document. For the barbed termination, barb design and number of barbs are at the discretion of the supplier, supplier shall publish any requirements specific to the barb and hose assembly.

3.2 Latching Requirements
The socket shall include a mechanism that latches and locks the socket to the plug in the area identified in Figure 3 UQD Plug Dimensions bounded by dimensions R, G, P, Q. This locking mechanism must be utilized to meet the pressure and durability requirements specified in this document in its coupled state. The mechanism shall be housed in the socket body.

3.3 Outer Envelope Requirements
The limiting use case for all sizes are the following:
- For height envelope assume multiple units stacked on a pitch of one rack unit height (1U) or 44.45mm.
- For overall diameter it is recommended to minimize to allow for finger access.
- For length it is recommended to minimize to allow for a maximum clearance within the cabinet.

4. Performance Requirements
In order to comply with this document, the coupling shall meet or exceed the performance requirements listed below.
4.1 Ergonomics Requirements

It is recommended to minimize coupling and decoupling forces for hand mate connectors see Table 4 Ergonomic Requirements.

QD pairs shall lock together in the coupled condition.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum coupling force</td>
<td>Supplier to publish coupling force</td>
<td>Required</td>
</tr>
<tr>
<td></td>
<td>versus pressure</td>
<td></td>
</tr>
<tr>
<td>Latching mechanism</td>
<td>Visual, tactile, and/or audible</td>
<td>Recommended</td>
</tr>
<tr>
<td></td>
<td>feedback.</td>
<td></td>
</tr>
</tbody>
</table>

4.2 Shelf & Service Life Requirements

UQD performance requirements shall be met when exposed to the following life cycles at end of life.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelf Life¹</td>
<td>5 years</td>
<td>Required</td>
</tr>
<tr>
<td>Service Life²</td>
<td>10 Years</td>
<td>Required</td>
</tr>
</tbody>
</table>

4.3 Durability Requirements

The socket must withstand 5000 make and break cycles. All performance requirements listed in Section 4 Performance Requirements must be met or exceeded when the socket and plug are mated in the first (time 0) and 5000th cycle and at end of service life required in Table 5.

4.4 Fluid Loss Requirements

The fluid loss per couple and decouple shall meet or exceed the performance requirements given in Table 6 Fluid Loss Requirement. Fluid loss requirements to be measured with water as the fluid medium.

¹ Shelf life is defined as the period of time after manufacturing and prior to service that the component must remain useable.

² Service life is defined as the period of time following a period of shelf life (storage), including time zero up to the maximum shelf life, that last up to end of service life.
Table 6 Fluid Loss Requirement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>UQD02</th>
<th>UQD04</th>
<th>UQD06</th>
<th>UQD08</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum fluid loss per couple/decouple cycle at 0 psi</td>
<td>0.020 ml</td>
<td>0.025 ml</td>
<td>0.035 ml</td>
<td>0.070 ml</td>
<td>Required</td>
</tr>
</tbody>
</table>

4.5 Flow Rate, Pressure and Temperature Requirements

Table 7 Flow and Temperature Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>UQD02</th>
<th>UQD04</th>
<th>UQD06</th>
<th>UQD08</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum operating pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
</tr>
<tr>
<td>Minimum burst pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
</tr>
<tr>
<td>Minimum Cv<sup>3</sup></td>
<td>0.25</td>
<td>0.80</td>
<td>1.60</td>
<td>2.50</td>
<td>Required</td>
</tr>
<tr>
<td>Flow Rating<sup>4</sup></td>
<td>At least 0.55 GPM</td>
<td>At least 1.7 GPM</td>
<td>At least 3.0 GPM</td>
<td>At Least 4.7 GPM</td>
<td>Recommended Manufacturer discretion (ratings shall be published by supplier)</td>
</tr>
<tr>
<td>Operating temperature range<sup>5</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
</tr>
<tr>
<td>Shipping temperature range<sup>6</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
</tr>
</tbody>
</table>

³ Cv are reported for water.

⁴ Flow rating is for water.

⁵ Support for higher temperature range is desirable as an option as there are known solutions that may operate in the range 17°C - 75°C. It is expected that rating would be published by supplier.

⁶ Shipping may include charged systems.
5. Marking Requirements

Identification as UQD and nominal size are required per Table 8 Color and Marking Requirements. Marking can be positioned per manufacturer’s discretion on any visual external surface of the plug and socket.

Table 8 Color and Marking Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification as Universal Quick Disconnect indicating universal</td>
<td>Must have visual identifier as follows corresponding to the associated size</td>
<td>Required</td>
</tr>
<tr>
<td>interchangeability and size on both plug and socket</td>
<td>UQD02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UQD04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UQD06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UQD08</td>
<td></td>
</tr>
<tr>
<td>Color Coding Options</td>
<td>At a minimum supplier shall provide color options of Red or Blue to limit probability of inadvertent crossing of fluid lines, Color coding should be visually noticeable</td>
<td>Required</td>
</tr>
</tbody>
</table>

5.1 Identification

Within digital or printed catalogs supplier shall identify products meeting these requirements as “Dimensional & performance requirements conform to OCP Universal Quick Disconnect (UQD) Specification rev 1.0”

6. Wetted Materials

Wetted materials shall be compatible with DOW Chemical DOWFROST™ LC25 [9] and Huntsman Chemical JEFFCOOL® ISF-25 heat transfer fluids [10]. Supplier is responsible to confirm all materials used in the UQD are compatible with the coolant fluids above and within the operating parameters specified in this document. If coolant fluid is other than stated above supplier should confirm the materials used are compatible with end user fluid chemistry.

7. Safety and Regulatory Requirements

As a minimum supplier shall meet the requirements of IEC62368-1 clause G.15.

8. Acknowledgements

Would like to thank the following companies and people for their contribution to this specification. From Avic Jonhnon Optronic Technology Company, Ella Li and Hanyu Lou. From CPC (Colder Products Company), Dennis Downs, Elizabeth Langer and Barry Nielsen. From Fujikura, Thang Nguyen and Vijit Wuttijumnong. From Intel Corporation, Peggy Burroughs, Juan Cevallos, Peipei Ding, Jessica Gullbrand, Jordan Johnson, David Shia, Rodel Samiley, Sean Sivapalan and Casey Winkel. From LBNL Open Specification for a Liquid Cooled Rack Working Group, Dale Sartor. From Parker Hannifin Corporation, Quick Coupling Division, Cameron Koller, Todd Lambert, Timothy Marquis and Lenny Nick. From Stäubli, Jean-Christophe Duuisit and Nicolas Monnier.
9. References

