
Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 1

OCP Microscaling Formats (MX) Specification

Version 1.0

Author: Bita Darvish Rouhani, Nitin Garegrat, Tom Savell, Ankit More, Kyung-Nam Han, Ritchie Zhao, Mathew Hall,
Jasmine Klar, Eric Chung, Yuan Yu, Microsoft
Author: Michael Schulte, Ralph Wittig, AMD
Author: Ian Bratt, Nigel Stephens, Jelena Milanovic, John Brothers, Arm
Author: Pradeep Dubey, Marius Cornea, Alexander Heinecke, Andres Rodriguez, Martin Langhammer, Intel
Author: Summer Deng, Maxim Naumov, Meta
Author: Paulius Micikevicius, Michael Siu, NVIDIA
Author: Colin Verrilli, Qualcomm

Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 2

Table of Contents
1. License 3

2. Compliance with OCP Tenets 4

2.1. Openness 4

2.2 Efficiency 4

2.3 Impact 4

2.4 Scale 4

2.5 Sustainability 5

3. Version Table 6

4. Scope 7

4.1. Definitions 7

4.2. Word Usage 8

5. Overview 9

5.1 Microscaling (MX) 9

5.2 Concrete MX-compliant Formats 10

5.2.1 Implementation Compliance 10

5.3 Element Data Types 10

5.3.1 FP8 11

5.3.2 FP6 12

5.3.3 FP4 12

5.3.4 INT8 13

5.4 Scale Data Types 14

5.4.1 E8M0 14

6. Basic Operations 14

6.1 Dot Product of Two MX-compliant Format Vectors 14

6.2 General Dot Product 15

6.3 Conversion from Vector of Scalar Elements to MX-compliant Format 15

7. References 15

Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 3

1. License

Contributions to this Specification are made under the terms and conditions set forth in Open Web

Foundation Modified Contributor License Agreement (“OWF CLA 1.0”) (“Contribution License”)

by:

AMD, Arm, Intel, Meta, Microsoft, NVIDIA, Qualcomm

Usage of this Specification is governed by the terms and conditions set forth in Open Web

Foundation Modified Final Specification Agreement (“OWFa 1.0”) (“Specification

License”).

You can review the applicable OWFa1.0 Specification License(s) referenced above by the

contributors to this Specification on the OCP website at

http://www.opencompute.org/participate/legal-documents/. For actual executed copies of either

agreement, please contact OCP directly.

 Notes:

1) The above license does not apply to the Appendix or Appendices. The information in the

Appendix or Appendices is for reference only and non-normative in nature.

NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED BY

OCP "AS IS" AND OCP EXPRESSLY DISCLAIMS ANY WARRANTIES (EXPRESS, IMPLIED,

OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY, NON-

INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO THE

SPECIFICATION. NOTICE IS HEREBY GIVEN, THAT OTHER RIGHTS NOT GRANTED AS

SET FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD PARTIES WHO

DID NOT EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE

IMPLEMENTATION OF OR COMPLIANCE WITH THIS SPECIFICATION. OCP IS NOT

RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE REQUIRED IN

ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK AS TO IMPLEMENTING

OR OTHERWISE USING THE SPECIFICATION IS ASSUMED BY YOU. IN NO EVENT WILL

OCP BE LIABLE TO YOU FOR ANY MONETARY DAMAGES WITH RESPECT TO ANY CLAIMS

RELATED TO, OR ARISING OUT OF YOUR USE OF THIS SPECIFICATION, INCLUDING BUT

NOT LIMITED TO ANY LIABILITY FOR LOST PROFITS OR ANY CONSEQUENTIAL,

INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES OF ANY CHARACTER FROM

ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION,

WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR

OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

http://www.opencompute.org/participate/legal-documents/

Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 4

2. Compliance with OCP Tenets

2.1. Openness

The Microscaling (MX) specification was developed in collaboration with a consortium of industry

members, including AMD, Arm, Intel, Meta, Microsoft, NVIDIA, and Qualcomm. This spec

represents an initial effort at standardizing an open, public, and inter-operable family of data

formats with a shared, fine-grained block scale. The MX standard also embraces and builds on

open data format standards such as OCP FP8.

The MX standard was the result of years of design space exploration, research effort, and

production learnings. Ideas and results which led to it have been publicly released in papers such

as [1,2,3]. Driving this standardization through OCP will enable us to open and further develop

these advancements to the OCP community and others.

2.2 Efficiency

MX-compliant formats enable Artificial Intelligence (AI) training and inference with lower bit-width

arithmetic operations and smaller memory footprints. This drives hardware performance and

efficiency gains that can reduce overheads and operational costs. Additionally, standardizing new

capabilities and formats that can be implemented across hardware and/or software—while

enhancing existing standards such as OFP8 and INT8—will reduce software and infrastructure

costs and any associated costs or overheads with customized solutions.

2.3 Impact

AI applications have had a transformative impact on the technology landscape. The MX

consortium driving this specification includes key ecosystem players including the largest vendors

of AI hardware accelerators, as well as major AI service providers who serve customers across

the world. Experimental results show that the concrete MX-compliant formats introduced in this

standard achieve robust model accuracy for AI training and inference using 8 bits or less. MX-

compliant formats have the high potential to become mainstream AI data formats with widespread

use and adoption in the technology industry.

2.4 Scale

This specification details the standard for MX-compliant data types. There are currently no sales

or usage figures to report. Based on the members in the MX consortium who are willing to ratify

the spec, there is strong potential for MX-compliant formats to address major segments of the

global AI hardware and AI services market.

To further enable scale, the concrete MX-compliant formats were designed to minimize vendor

and end-user friction. The concrete formats were chosen to be compatible with existing hardware

devices. Extensive experimental data shows that in many diverse real-world cases, the concrete

Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 5

MX-compliant formats can be used as a robust alternative for existing training and inference data

formats with low user friction.

2.5 Sustainability

AI training and inference is a major (and growing) workload for cloud service providers,

contributing significantly to OpEx costs (power and cooling) and carbon emissions of datacenters.

MX-compliant data formats are expected to improve the energy efficiency of AI at datacenter

scale as well as on many AI endpoints, thus helping to reduce the environmental impact of AI

technologies.

Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 6

3. Version Table

Date Version # Author Description

9/7/2023 1.0 Bita Darvish Rouhani Defines MX-compliant
data formats.

Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 7

4. Scope

This specification defines Microscaling (MX)-compliant data formats, their binary interchange

formats, and basic operations on them. It specifies concrete MX-compliant 8-bit, 6-bit, and 4-bit

data formats. Additionally, it defines the binary encodings for 6-bit floating-point (FP6), 4-bit

floating-point (FP4), and 8-bit integer (INT8) numbers.

Not in scope are:

• Binary encodings for 8-bit floating-point (FP8). The FP8 encodings in this specification are

adopted from the OCP FP8 specification.

• Binary encodings for the element when the block scale is NaN.

• Detailed algorithms for computing the block scale.

• Details of applications’ use of specified MX-compliant data formats in general.

This standard may be realized entirely in software, entirely in hardware, or in any combination of

software and hardware.

4.1. Definitions

Data format: A data format is composed of all fields that are used to represent one or more real

values, infinities (positive or negative), or NaN (quiet or signaling). Throughout this specification,

the term “data type” is used interchangeably with “data format”.

Encoding: A sequence of bits that stores data of a specific data format.

Float32: Binary32 format defined in the IEEE Standard for Floating-Point Arithmetic [4]. It is a

scalar floating-point data format. 𝑉𝑚𝑎𝑥𝐹𝑙𝑜𝑎𝑡32 refers to the largest representable number in

Float32.

Mantissa: The part of a finite floating-point number that contains the fraction bits of the significand

(this is equivalent to the trailing significand field defined in the IEEE Standard for Floating-Point

Arithmetic [4]). The term “mantissa bits” refers to the fraction bits of the significand.

Normal number: For a particular format, a finite non-zero floating-point number with magnitude

greater than or equal to bemin where b is the radix and emin is the minimum representable

exponent. Such numbers can use the full precision of the mantissa.

Subnormal number: For a particular format, a non-zero floating-point number with magnitude

smaller than the smallest normal number. Such numbers cannot use the full precision of the

mantissa. Also known as denormalized number.

Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 8

NaN: Not a number. A symbolic floating-point datum denoting the result of invalid or undefined

operations. The IEEE floating-point specification defines two types of NaNs: quiet NaNs and

signaling NaNs. This specification does not differentiate between quiet and signaling NaNs.

Inf: Infinity.

roundTiesToEven: A method for rounding to nearest, where ties are broken by rounding them to

the value with an even least-significant digit. See IEEE Standard for Floating-Point Arithmetic [4],

Section 4.3.1 for additional details.

ExMy: Notation for a scalar format with one sign bit, x exponent bits, and y mantissa bits. E.g.,

E4M3 refers to an FP8 format with one sign bit, four exponent bits, and three mantissa bits. In the

case where y is zero (e.g., E8M0), the format does not include the sign bit.

4.2. Word Usage

In this specification, key words “may”, “should”, and “must” are used to specify and differentiate

different levels of requirements. They are defined as follows:

• “must” indicates an action is absolutely required to be compliant under this specification.

• “should” indicates an action is recommended, though it is not required, and other options

are allowed.

• “may” indicates an action is optional. Implementations can choose whether to take the

action or not.

Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 9

5. Overview

5.1 Microscaling (MX)

An MX-compliant format is characterized by three components:

• Scale (𝑋) data type / encoding

• Private elements (𝑃𝑖) data type / encoding

• Scaling block size (𝑘)

All 𝑘 elements (𝑃𝑖) have the same data type and, therefore, the same bit-width. The scale factor

𝑋 is shared across all k elements. The data types of the elements and scale are chosen

independently. In this sense, MX can be seen as a mechanism to build a vector data type from

scalar data types.

The bit widths are represented by the following symbols:

• w: number of bits used to encode the shared scale 𝑋

• d: number of bits used to represent each element 𝑃𝑖

Therefore, each block of 𝑘 elements can be encoded in (𝑤 + 𝑘𝑑) bits. The layout of the block in

physical memory is not prescribed in this specification. If multiple blocks share the same scale

factor, an implementation can compress or prune away the repeated scale factors. An

implementation can store the scale factor 𝑋 contiguously with or separately from the k elements.

The values v1, …, vk represented in an MX block are inferred from the constituent fields as follows:

• If 𝑋 = NaN, then 𝑣𝑖 = NaN for 1 ≤ 𝑖 ≤ 𝑘 regardless of 𝑃𝑖

• If 𝑋 ≠ NaN:

- If 𝑃𝑖 ∈ {Inf, NaN}, then 𝑣𝑖 = 𝑃𝑖

- If 𝑋𝑃𝑖 > 𝑉𝑚𝑎𝑥𝐹𝑙𝑜𝑎𝑡32 or 𝑋𝑃𝑖 < −𝑉𝑚𝑎𝑥𝐹𝑙𝑜𝑎𝑡32 then 𝑣𝑖 is implementation-defined

- Otherwise, 𝑣𝑖 = 𝑋𝑃𝑖

Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 10

Here 𝑉𝑚𝑎𝑥𝐹𝑙𝑜𝑎𝑡32 is the largest representable number in the Float32 data format. MX-compliant

format encodings are expected to be within Float32 range. When the absolute value of an

encoded value is larger than 𝑉𝑚𝑎𝑥𝐹𝑙𝑜𝑎𝑡32, the behavior is implementation-defined. NaN encodings

for the block scale can be found in Section 5.4. When the scale is NaN, all values in the MX block

are NaNs and the element encodings are ignored.

5.2 Concrete MX-compliant Formats

A concrete MX-compliant format consists of a specific block size 𝑘 and data types of 𝑋 and 𝑃𝑖.

The following concrete MX-compliant formats are part of this specification. The element and scale

data types listed in this table are described in the next section.

Format
Name

Element Data
Type

Element Bits
(d)

Scaling Block Size
(k)

Scale Data
Type

Scale Bits
(w)

MXFP8
FP8 (E5M2)

8 32 E8M0 8
FP8 (E4M3)

MXFP6
FP6 (E3M2)

6 32 E8M0 8
FP6 (E2M3)

MXFP4 FP4 (E2M1) 4 32 E8M0 8

MXINT8 INT8 8 32 E8M0 8

Table 1. Format names and parameters of concrete MX-compliant formats.

To avoid confusion with existing scalar data types, we explicitly adopt the following naming

convention: when referring to any of the MX-compliant data types, we prepend "MX" to the

element data type name.

5.2.1 Implementation Compliance

To be compliant with this specification, it is not required for all the concrete MX-compliant formats

to be supported. An implementation may choose to support any subset of the formats. Different

encodings (e.g., E5M2 and E4M3 for MXFP8) are considered different formats. For each

supported format, an implementation must support the parameters listed in Table 1.

5.3 Element Data Types

The following element data types are specified for MX-compliant formats. For the FP8, FP6, and

FP4 formats, the value of an encoding (excluding Inf and NaN encodings for FP8 listed in Section

5.3.1) is inferred as follows:

Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 11

a) if 𝐸 > 0, then 𝑣 = (−1)𝑆 × 2𝐸−𝑏𝑖𝑎𝑠 × (1 + 2−𝑚 × 𝑀). This is a normal number.

b) if 𝐸 = 0, then 𝑣 = (−1)𝑆 × 21−𝑏𝑖𝑎𝑠 × (0 + 2−𝑚 × 𝑀). This is a subnormal number.

Where:

- 𝑆, 𝐸, and 𝑀 are the values of the Sign, Exponent, and Mantissa fields, respectively.

- 𝑏𝑖𝑎𝑠 is the exponent bias.

- 𝑚 is the number of mantissa bits.

The figure below shows the sign, exponent, and mantissa fields in an MX-compliant format with

floating-point element data type (left) and an MX-compliant format with integer element data type

(right).

5.3.1 FP8

FP8 implementations must adhere to OCP 8-bit Floating Point Specification. Table 2 and Table 3

below reproduce information from that specification. An implementation must support the saturate

(SAT) and overflow (OVF) methods outlined in Table 3 for handling conversions of values from

another format to FP8. Other methods may be supported, with a configurable overflow attribute

to choose between the available methods.

 E4M3 E5M2

Exponent bias 7 15

Infinities N/A S 11111 002

NaN S 1111 1112 S 11111 {01, 10, 11}2

Zeros S 0000 0002 S 00000 002

Max normal S 1111 1102 = ± 28 × 1.75 = ± 448 S 11110 112 = ± 215 × 1.75 = ± 57,344

Min normal S 0001 0002 = ± 2−6 S 00001 002 = ± 2−14

Max subnorm S 0000 1112 = ± 2−6 × 0.875 S 00000 112 = ± 2−14 × 0.75

Min subnorm S 0000 0012 = ± 2−9 S 00000 012 = ± 2−16
Table 2. FP8 encoding details. This information is reproduced from Table 2 in the OCP FP8 specification

[5].

https://github.com/opencomputeproject/FP8/blob/main/OCP%208-bit%20Floating%20Point%20Specification%20(OFP8)%20Revision%201.0%202023-06-20.pdf

Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 12

Source Value
(after rounding)

Destination Value

E4M3 E5M2

SAT OVF SAT OVF

NaN NaN NaN NaN NaN

±Inf ±max_E4M3 NaN ±max_E5M2 ±Inf

Greater than max FP8
magnitude

±max_E4M3 NaN ±max_E5M2 ±Inf

Table 3. Special cases when converting to FP8, with the configurable overflow attribute set to
OVERFLOW or SATURATE modes. This information is reproduced from Table 3 in the OCP FP8

specification [5].

5.3.2 FP6

FP6 implementations must adhere to the table below, with support for subnormals. No encodings

are reserved for Inf or NaN in FP6. An implementation must support the roundTiesToEven

rounding mode for converting values to FP6. Other rounding modes may be supported.

During conversion to FP6, if a value exceeds the FP6 representable range after rounding, an

implementation must support clamping (saturating) the value to the maximum FP6 magnitude,

preserving the sign. Other methods may be supported, with a configurable overflow attribute to

choose between available methods. Out-of-range values can be normal numbers or Infs in a wider

data format.

During conversion to FP6, if a value has magnitude less than the minimum subnormal magnitude

of FP6 after rounding, an implementation must convert the value to zero. Conversion from NaNs

is implementation-defined.

 E2M3 E3M2

Exponent bias 1 3

Infinities N/A N/A

NaN N/A N/A

Zeros S 00 0002 S 000 002

Max normal S 11 1112 = ± 22 × 1.875 = ± 7.5 S 111 112 = ± 24 × 1.75 = ± 28.0

Min normal S 01 0002 = ± 20 × 1.0 = ± 1.0 S 001 002 = ± 2-2 × 1.0 = ± 0.25

Max subnorm S 00 1112 = ± 20 × 0.875 = ± 0.875 S 000 112 = ± 2-2 × 0.75 = ± 0.1875

Min subnorm S 00 0012 = ± 20 × 0.125 = ± 0.125 S 000 012 = ± 2-2 × 0.25 = ± 0.0625
Table 4. FP6 encoding details.

5.3.3 FP4

FP4 implementations must adhere to the table below, with support for subnormals. No encodings

are reserved for Inf or NaN in FP4. An implementation must support the roundTiesToEven

rounding mode for converting values to FP4. Other rounding modes may be supported.

Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 13

During conversion to FP4, if a value exceeds the FP4 representable range after rounding, an

implementation must support clamping (saturating) the value to the maximum FP4 magnitude,

preserving the sign. Other methods may be supported, with a configurable overflow attribute to

choose between available methods. Out-of-range values can be normal numbers or Infs in a wider

data format.

During conversion to FP4, if a value has magnitude less than the minimum subnormal magnitude

of FP4 after rounding, an implementation must convert the value to zero. Conversion from NaNs

is implementation-defined.

 E2M1

Exponent bias 1

Infinities N/A

NaN N/A

Zeros S 00 02

Max normal S 11 12 = ± 22 × 1.5 = ± 6.0

Min normal S 01 02 = ± 20 × 1.0 = ± 1.0

Max subnorm S 00 12 = ± 20 × 0.5 = ± 0.5

Min subnorm S 00 12 = ± 20 × 0.5 = ± 0.5
Table 5. FP4 encoding details.

5.3.4 INT8

INT8 implementations must adhere to the table below, with the sole exception of the maximum

negative representation of −2 (see the note on 2’s complement below). No encodings are

reserved for Inf or NaN in INT8. An implementation must support the roundTiesToEven rounding

mode for converting values to INT8. Other rounding modes may be supported.

During conversion to INT8, if a value exceeds the INT8 representable range after rounding, the

implementation must support clamping (saturating) the value to the maximum INT8 magnitude,

preserving the sign. Other methods may be supported, with a configurable overflow attribute to

choose between available methods. Out-of-range values can be normal numbers or Infs in a wider

data format. Conversion from NaNs is implementation-defined.

Integer data types use a 2’s complement encoding, but the maximum negative representation

(−2) may be left unused to maintain symmetry between the maximum positive and negative

representations and avoid introducing a negative bias.

The INT8 encodings include an implicit scale factor so that there is one sign bit, one integer bit,

and six fractional bits.

Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 14

 INT8

Exponent bias N/A

Implicit scale 2−6

Infinities N/A

NaN N/A

Zeros 0 0.0000002

Max (symmetric) 0 1.1111112 = +1 63/64
1 0.0000012 = −1 63/64

Min 0 0.0000012 = +1/64
1 1.1111112 = −1/64

Table 6. INT8 encoding details.

5.4 Scale Data Types

The following scale data types are specified for MX-compliant formats.

5.4.1 E8M0

E8M0 is an unsigned representation of a conventional biased Float32 exponent. Unlike Float32

exponents, there is no representation for Inf and only a single NaN encoding is reserved.

 E8M0

Exponent bias 127

Supported exponent range -127 to 127

Infinities N/A

NaN 111111112

Zeros N/A

Table 7. Scale data type E8M0 encoding details.

6. Basic Operations

This section describes basic operations on MX-compliant formats.

6.1 Dot Product of Two MX-compliant Format Vectors

The dot product of two MX-compliant format vectors 𝐴: {𝑋(𝐴), [𝑃𝑖
(𝐴)

]
𝑖=1

𝑘
} and 𝐵: {𝑋(𝐵), [𝑃𝑖

(𝐵)
]

𝑖=1

𝑘
} of

length 𝑘 is a scalar number 𝐶. The following semantics must be minimally supported:

𝐶 = 𝐷𝑜𝑡(𝐴, 𝐵) = 𝑋(𝐴)𝑋(𝐵) ∑ (𝑃𝑖
(𝐴)

× 𝑃𝑖
(𝐵)

)

𝑘

𝑖=1

Where:

• 𝑋(𝐴), 𝑋(𝐵) are the block scales of vectors 𝐴 and 𝐵 respectively.

Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 15

• 𝑃𝑖
(𝐴)

, 𝑃𝑖
(𝐵)

 are the i’th element of vectors 𝐴 and 𝐵 respectively.

𝐴 and 𝐵 may use different data types for either/both scale and element. The internal precision of

the dot product and order of operations is implementation-defined. By factoring out the shared

scales, the dot product reduction only computes on the elements.

6.2 General Dot Product

The general dot product of two vectors 𝐴 and 𝐵 should be a scalar Float32 number 𝐶. It is

assumed that the vectors are padded to have length that is a multiple of scaling block size 𝑘. Let

the padded vectors 𝐴 and 𝐵 have length 𝑛 × 𝑘 consisting of 𝑛 MX-compliant vectors each of length

𝑘, then the general dot product of 𝐴 and 𝐵 is defined as:

𝐶 = 𝐷𝑜𝑡𝐺𝑒𝑛𝑒𝑟𝑎𝑙(𝐴, 𝐵) = ∑ 𝐷𝑜𝑡(𝐴𝑗, 𝐵𝑗)

𝑛

𝑗=1

Where 𝐷𝑜𝑡() is defined in Section 6.1, and 𝐴𝑗 and 𝐵𝑗 are the j’th MX-compliant sub-vector of 𝐴

and 𝐵.

6.3 Conversion from Vector of Scalar Elements to MX-compliant Format

A mechanism must be provided for converting a 𝑘-length vector 𝑉: [𝑉𝑖]𝑖=1
𝑘 of scalar elements to

an MX-compliant format {𝑋, [𝑃𝑖]𝑖=1
𝑘 } by producing the block scale 𝑋 and the elements 𝑃𝑖. In

particular, the following semantics should be minimally supported:

1. Set 𝑋 to be the largest power-of-two1 less than or equal to max
𝑉𝑖∈𝑉

(|𝑉𝑖|), divided by the largest

power-of-two representable in the element data type.

2. Set 𝑃𝑖 to be the scaled inputs 𝑉𝑖 / 𝑋 quantized to the element data type. For this

quantization, normal numbers that exceed the max normal representation of the element

data type should be clamped to the max normal, preserving the sign.

Other algorithms for conversion of a vector of scalar elements to MX-compliant formats may be

supported. For quantization to the element data type, implementations must support

roundTiesToEven as a rounding mode. Other rounding modes may be supported.

7. References

[1] Darvish Rouhani, Bita, et al., "Pushing the Limits of Narrow Precision Inferencing at Cloud

Scale with Microsoft Floating Point", Advances in Neural Information Processing

Systems (NeurIPS), link, Dec 2020

1 A power-of-two is a number of the form 2n where n is a positive integer, negative integer, or zero.

https://proceedings.neurips.cc/paper/2020/file/747e32ab0fea7fbd2ad9ec03daa3f840-Paper.pdf

Open Compute Project • OCP Microscaling Formats (MX) Specification

Date: Sep 2023 Page 16

[2] Darvish Rouhani, Bita, et al., "With Shared Microexponents, A Little Shifting Goes a Long

Way", International Symposium on Computer Architecture (ISCA), link, June 2023

[3] Darvish Rouhani, Bita, et al., “OCP Microscaling Formats for Deep Learning”, link, Sep 2023

[4] IEEE Computer Society, “IEEE Standard for Floating-Point Arithmetic”, in IEEE Std 754-2019

(Revision of IEEE 754-2008), link, June 2019

[5] Micikevicius, Paulius, et al., “OCP 8-bit Floating-Point Specification”, link, June 2023

https://dl.acm.org/doi/abs/10.1145/3579371.3589351
https://aka.ms/AAlfkt6
https://ieeexplore.ieee.org/document/8766229
https://github.com/opencomputeproject/FP8/blob/main/OCP%208-bit%20Floating%20Point%20Specification%20(OFP8)%20Revision%201.0%202023-06-20.pdf

