
SPECIFICATION: FIRMWARE UPDATE

REQUIREMENTS FOR GPU

Author (s) :

Vishal Jain, Shivi Fotedar, Ryan Speiser NVIDIA

Karunakara Kotary, Venkatesh RamamurthyMicroso�

Sujoy Sen, Arvind Ayyangar Google

PAGE 2

Executive Summary
Management of GPUs is not standardized, resulting in significant effort and time to onboard each new HW

design. The lack of standardization is also a burden on suppliers whomust accommodate varying requirements

from their customers. This document describes industry standard formats and protocols for GPU System

Firmware Update that make it easier for CSPs (Cloud Service Providers) to onboard new GPU and accelerator

designs with less toil and faster time to market.

PAGE 3

Table of Contents

1. Introduction 4
1.1 Overview 4
1.2 Assumptions, Constraints,Dependencies 4
1.3 Use Cases 5
1.4 Glossary/Terminology 5

2. Firmware Update Model 8
2.1 Firmware Update States 9
2.2 Baseboard with Accelerator Management Controller (AMC) 9
2.3 Baseboard without AMC 11
2.4 Firmware Device State Machine Diagram 14

3. Firmware Update Requirements 16
3.1 Firmware Update 16

3.1.1 Secure firmware update 17
3.1.2 Firmware Copy time 17
3.1.3 Firmware activation 17
3.1.4 Firmware Update protocols 17
3.1.5 Firmware update idempotency 18
3.1.6 Firmware update dependencies 18
3.1.7 Firmware date compatibility 18
3.1.8 Non-disruptive updates 18
3.1.9 Firmware update synchronization 18
3.1.10 Restore previous image upon cancellation of firmware update 19

3.2 Firmware Rollback Prevention 19
3.2.1 Checks to stop firmware rollback 19
3.2.2 Explicit command to update security versions on device 19

3.3 Firmware Image Format 19
3.4 Firmware Image Size 20
3.5 Firmware Fungibility 20
3.6 Single shot firmware update 21
3.7 Firmware Image redundancy 21
3.8 Firmware resiliency 21

3.8.1 Single Fault 21
3.8.2 Double Fault 22

3.9 Firmware telemetry 22
3.10 Debugmessages for runtime DC Ops 22

PAGE 4

4. Redfish Update Service 22
4.1 Common properties 22
4.2 Firmware Inventory and Update Service 23

4.2.1 GET - UpdateService 23
4.2.2 GET - So�wareInventory 26
4.2.3 GET - FirmwareInventory 27
4.2.4 POST - Updating Firmware 27

4.3 TaskService 29
4.3.1 Task 29

4.4 Redfish Error Reporting for Firmware Update 32
4.4.1 Message Registry 32
4.4.2 Immediate Failures 34
4.4.3 Failure during background/async operation 35
4.4.4 Firmware update client workflows 36

5. PLDMUpdate 40
5.1. PLDM Update Commands 40
5.2 PLDM Update Timing Requirements 42

6. File Format 44
6.1 File Format 44
6.2 Package Security 45

7. License - OpenWeb Foundation (OWF) CLA 46
8. OCP Tenets 47
About Open Compute Foundation 48
Appendix A. [Redfish API Example] 49

1. Introduction

1.1 Overview

This document specifies the GPU firmware(FW) update requirements and Redfish/PLDM interfaces to perform

FW updates on GPU products. This document covers the FW Update model for discrete GPUs and Universal

Base-board based GPU systems containing management controllers. This document further captures the e2e

flows from a Data Center orchestrator perspective.

1.2 Assumptions, Constraints,Dependencies

● Hyperscale partners own Host BMC.

PAGE 5

● Requirements are for vendor HW board and/or firmware devices.
● Host BMC implementation of these requirements will be co-developed by the Hyperscaler

and the Vendor via openBMC.

1.3 Use Cases

The following table lists the use cases.

Use Case Description

Universal base
boards

Vendor provides a proprietary baseboard, with capabilities for power
sequencing, firmware update, telemetry, and Accelerator Management
Controller. Example Nvidia HGX cards

Discrete
Accelerator Device

Vendor provides standard PCIe cards, without accelerator BMC.
Example Nvidia PCIe cards (GPU and/or NIC)

Table 1: use cases

1.4 Glossary/Terminology

Activation This is the operation to mark the FW image as the active image for the
device to load on next use. The device can be forced to load and use the
active image via a device reset or some other device specific
mechanism.

Background
Update/Copy

This is the operation of sending a FW Image or Bundle to a GPU device
or subsystem. This may consist of staging and/or flashing phases. The
reason for the term “Background” is to imply that this does not disrupt the
normal operation of the device during this process. The end state of this
operation is the successful flashing of the FW Image.

Flashing Storage of a FW Image in a non-volatile media typically attached to a
device/RoT and used by the device to load its FW for operation. This
does not imply any particular type of media or partition.

Fungibility The property of a product whose individual units are interchangeable
despite implementation differences. Fungible units must adhere to the
same product definition in terms of form, fit, and compute value.

PAGE 6

Firmware
Fungibility

The ability for a single product firmware image or firmware bundle to
support fungible (interchangeable) units.

FW Bundle one or more firmware payload packaged per an aligned specification

Orchestrator Initiator of FW updates, which controls the entire flow of transfering,
updating and activating the firmware for one or multiple nodes.

PRoT Platform Root of Trust. Entity in the platform that measures each
component in the platform.

precheck aspect of Cloud Orchestrator verifying the device firmware versions,
security versions and comparing with new incoming versions

postcheck The aspect of Cloud Orchestrator verifying if the device has accepted the
firmware update and making use of the new firmware

RoT Root Of Trust. This could be a device level RoT or Platform entity.

Staging This is non-volatile storage that a FW image may be temporarily stored
in by a management controller during a FW Update process

Table 2: Firmware Update Terminology

Term Elaboration Description

AP Application Processor Examples of APs include GPU,
FPGA, and PCIE Switch.

AP_FW Application processor firmware Firmware that is associated with
an AP.

AMC Accelerator Management
Controller

A controller that acts as the
management entity for a UBB
based GPU system. It typically
exports Redfish but may export
a custom interface as well.

CS Chip Select Chip select pins are often used
with the serial peripheral
interface (SPI) protocol to select
one of multiple SPI devices that
share the same data lines.

EC_FW Embedded Controller Firmware

PAGE 7

Term Elaboration Description

that runs on the External
root-of-trust

ERoT External Root of Trust (RoT) A RoT that is external to a
device.

To provide flash security, this
controller can sit between a
device and its flash storage.

FLR Function level reset Function level reset as defined
by PCIE specifications.

Host BMC Host Baseboard management
controller

A microcontroller that is
responsible for the overall
management of a system. It
contains many components,
which include monitoring and
control of power sequencing,
thermal elements, device
telemetry, and firmware
updates/recovery.

InB In-Band Refers to the data plane of a
device that is in line with the
host operating system under
which a device is operational.

MCTP Management Control Transport
Protocol

Refers to the DTMF MCTP
standard (DSP0236 and related
specification).

OOB Out-of-band Refers to the management
plane of a device that is not in
line with the host operating
system under which a device is
operational.

PEC Packet Error Code In the SMBus spec, it is CRC-8
calculated over all message
bytes.

PEXRST PCIE Reset as defined by the
PCIE specifications.

PLDM Platform Level Data Model Refers to the DMTF PLDM
standard (DSP0248, DSP0267,
and related specification).

PAGE 8

Term Elaboration Description

SMC Satellite Management Controller A controller that acts as the
management entity for a UBB
based GPu system. It typically
exports Redfish but may export
a custom interface as well.

SBR Secondary bus reset Secondary bus reset as defined
by the PCIE specifications.

UA Update Agent Update Agent as defined in the
PLDM for Firmware Update
specification (DMTF DSP0267).

Table 3: Firmware Device Terminology

2. Firmware Update Model

Figure 1: Hyperscaler Firmware update model

PAGE 9

This specification assumes a device and management model shown in Figure 1. There are two
classes of GPU products being modeled, a discrete GPU such as a PCIe card and an UBB or GPU
system that contains one or more GPUs and other components (like PCIe switches, fabric elements
etc.). The management model assumes a BMC connected to the GPU product to manage it and also
provides an interface to the Hyperscale orchestrator (and other clients). The northbound interface
from the BMC is based on Redfish. For UBB based GPU system, the model assumes a management
controller provides a Redfish based interface to the BMC. This will be referred to as the “Accelerator
Management Controller”. For discrete GPUs, the management protocol between the BMC and the
GPU is expected to be PLDM over MCTP.

2.1 Firmware Update States

The FW Update process consists of various steps and phases. The basic steps of a FW Update
operation from a Hyperscaler Orchestrator/BMC point-of-view is

- FW Copy: This copies the FW package to the GPU FW device.
- FW Arm: This marks the FW to be ready for activation
- FW Activate: This loads and executes the FW on the device. This is usually accomplished by a

device reset or power cycle.

The following sections describe the theory of operation of a reference FW Update process. This
provides a model for the requirements described in Section 3.
The next sub-sections describe a reference firmware update sequence for two scenarios,

- a complex baseboard with a Accelerator Management Controller (AMC)
- a simpler board such as a PCIe card which doesn’t have a AMC.

2.2 Baseboard with Accelerator Management Controller (AMC)

The figure below shows AMC updating firmware of all devices on a vendor baseboard on behalf of
the host BMC.

Figure 2: GPU Firmware device with AMC

PAGE 10

Host BMC uses Redfish Firmware Update (by using the UpdateService schema) to send to AMC
firmware updates of all devices in the baseboard packaged in a PLDM bundle (as per DMTF
DSP0267). SMC then downloads images to all the devices on the baseboard, e.g using PLDM or a
proprietary protocol.

The sequence diagram below shows the end to end update process from the CSP’s Orchestrator to
the Firmware Device. The diagram uses PLDM protocol to illustrate the interaction between the
AMC and Firmware Device but any equivalent proprietary protocols that achieve the same
functionality are acceptable. Update happens in three steps

- Pre-Check, where the Orchestrator checks the firmware versions and firmware health of the
devices.

- Update, which happens in two steps:
- The images are copied, verified and then applied on the firmware devices during

production without any service impact, and then,
- The images are activated only during a maintenance window after the Orchestrator

has issued an explicit Armmessage.
- Post-Check, where the Orchestrator confirms the update is successful by checking the

firmware versions and the health of the firmware devices.

Here are the steps for firmware update:
1. The Orchestrator checks the firmware versions and the health of the devices on the baseboard

from the SMC (via the host BMC).
2. The Orchestrator then uses Redfish UpdateService to copy download the firmware bundle to the

AMC.
3. Upon successful receipt of the firmware bundle, the AMC sends the Upload complete message

to the Orchestrator. The Orchestrator then periodically queries the AMC with Redfish Task
Progress until the images are applied to the firmware devices.

4. Upon receipt of the firmware bundle, the AMC identifies the right firmware for each device in the
baseboard and copies the firmware to all the devices.

5. Devices apply/save the images on their non-active non-volatile memory after verifying the
images. Verification may include authenticating the signatures on the images and any security
rollback restrictions.

6. If the verification fails, the firmware will not be activated, and the non-active area will be
restored with the image from the active region.

7. Once images are applied/saved in the firmware devices, the AMC notifies the Orchestrator (via
the host BMC).

8. The Orchestrator sends the measurements of the new firmware to the PROT so it can start using
them for attestation.

9. The Orchestrator then sends an Arm command to the AMC.
10. SMC then relays the command to all the firmware devices, which then Arm their new images.
11. Once the Orchestrator reboots/power cycle/resets the system, the new firmware on the devices

are activated.
12. The Orchestrator does a post check of the firmware versions and the health of the devices to

make sure the update was successful.

https://redfish.dmtf.org/schemas/v1/UpdateService_v1.xml

PAGE 11

Figure 3: Firmware update sequence diagram with AMC

2.3 Baseboard without AMC

The figure below shows the host BMC directly updating firmware of all devices on a vendor board,
when a vendor board doesn’t have a AMC. Host BMC uses PLDM over MCTP to copy images to all the
devices on the board.

PAGE 12

Figure 4: GPU Firmware device without AMC

The sequence diagram below shows the end to end update process from the CSP’s Orchestrator to
the Firmware Device. Update happens in three steps

- Pre-Check, where the Orchestrator checks the firmware versions and firmware health of the
devices.

- Update, which happens in two steps:
- The images are copied, verified and then applied on the firmware devices during

production, and then,
- The images are activated only during a maintenance window after the Orchestrator

has issued an explicit Armmessage.
- Post-Check, where the Orchestrator confirms the update is successful by checking the

firmware versions and the health of the firmware devices.

Here are the steps for firmware update:
1. The Orchestrator checks the firmware versions and the health of the devices on the

baseboard from the host BMC.
2. The Orchestrator then uses Redfish UpdateService to download the firmware bundle to the

host BMC.
3. Upon successful receipt of the firmware bundle, the host BMC sends the Upload complete

message to the Orchestrator. The Orchestrator then periodically queries the host BMC with
Redfish Task Progress until the images are applied to the firmware devices.

4. Upon receipt of the firmware bundle, the host BMC identifies the right firmware for each
device in the baseboard and copies the firmware to all the devices.

5. Devices apply/save the images on their non-active non-volatile memory after verifying the
images. Verification may include authenticating the signatures on the images and any
security rollback restrictions.

6. If the verification fails, the firmware will not be activated, and the non-active area will be
restored with the image from the active region.

7. Once images are applied/saved in the firmware devices, the host BMC notifies the
Orchestrator.

8. The Orchestrator sends the measurements of the new firmware to the PROT so it can start
using them for attestation.

9. The Orchestrator then sends an Arm command to the host BMC.

PAGE 13

10. The host BMC then relays the command to all the firmware devices, which then Arm their
new images.

11. Once the Orchestrator reboots/powercycle/resets the system, the new firmware on the
devices are activated.

12. The Orchestrator does a post check of the firmware versions and the health of the devices to
make sure the update was successful.

Figure 5: Firmware update sequence diagram without AMC

PAGE 14

2.4 Firmware Device State Machine Diagram

The figure below shows the state machine diagram for a firmware device during firmware update

Figure 6: Firmware update device states

https://app.diagrams.net/?page-id=900Jll4stHeEt2dAT3yh&scale=auto#G1En9bY_9O_n6-AuZHI5oXqEJEYTlTeqaD

PAGE 15

Figure 7: Firmware Device background update

State definition table

State Name Description

Idle
Default state, Firmware Device (FD) is fully initialized and ready to receive
the firmware update/firmware inventory related redfish commands

Download
After receiving the appropriate Redfish command to update a firmware
component, the FD moves to this state and works with Hyper scalar Update
Agent over Redfish API to receive the complete firmware package & verifies
that the PLDM package is intact by checking the checksum.

Verify
In this state the FD (or the Embedded ROT) performs security verification
(signature/HASH) of the firmware images, verification algorithm used is GPU
specific but recommended once are >= SHA 256/RSA 2048. Gets called as
part of Apply and as part of activation.

https://app.diagrams.net/?page-id=YEXAWR-Weuf0Kpwpvrfv&scale=auto#G1wBUsPLsZZXEYJqKfKo2McQfqyMF0dqWM

PAGE 16

Apply
Upon completion of download, FD unwraps the PLDM package and verifies
the UA redfish configured FD update targets, extracts the right firmware
payloads & subjects them to verification. Upon successful verification step
FD writes the firmware payload to the Nonvolatile storage of the respective
FD.

Arm Upon successful image application , Hyper scalar Update Agent may arm
the image activation by configuring the appropriate activation method

Activate
Upon successful Application firmware images, Hyper scalar update agent
requests FD to perform image activation , upon successful activation FD
starts consuming the new firmware. After activation the FD moves to the
IDLE state.

Table 4: Firmware update State definition

Initial State Next State State Trigger On Error

Idle Download Redfish Update
command

Retry download

Download Verify Redfish Task
monitor

Retry download

Verify Apply implicit Retry download

Apply Arm Redfish Arm
command

Arm Activate Redfish/inband
activate /AC/DC
command

Table 5: Firmware update State transition table

3. Firmware Update Requirements

3.1 Firmware Update

The product shall support OOB secure firmware update of all its mutable components. The update
must be designed to be secure, fast, efficient, standards based, and reduce system downtime to
complete the update.

PAGE 17

3.1.1 Secure firmware update

Vendors must provide secure updates of firmware. Secure update may be implemented by using
ERoTs or iRoT's with all the firmware devices. The ERoT/iRoT performs the following functions:

● Verifies the cryptographic signatures on every firmware update.
● Enforces a rollback policy to prevent firmware downgrade attacks.
● Enforces key revocation checks to ensure that a compromised key cannot be used to sign

firmware updates.

Vendors must also provide mechanisms to write-protect firmware updates from the in-band path i.e.
prevent FW update by any inband agents (host CPU). Write protection must be configurable, e.g via
EROT to block updating firmware flash. In addition, a hardware based write protect, such as user
controlled GPIO shall be available to disable/override programmable configuration. Write protect
should be disabled by default to avoid firmware update lockout.

3.1.2 Firmware Copy time

Firmware updates for all devices shall be performed as described in Section 2, first requiring
downloading/copying images to the devices and then activating them on receiving explicit
command. Vendors must design firmware updates to keep copying of the image to the devices to a
minimum and must not cause any disruption in services. Copy of firmware images to devices should
be in the order of minutes for baseboards with Accelerator Management Controllers and order of
seconds for firmware devices for boards without Accelerator Management Controllers. To enable
fast copy of images to the devices, vendors may use fast physical transport such as USB, SPI, I3C.

3.1.3 Firmware activation

After devices have copied the images, they will activate the image only upon receiving explicit
command. The devices may not use auto self-contained activation (as defined in DMTF DSP0267).
The following activation methods may be required:
● AC Power Cycle
● DC Power Cycle
● Warm Reboot (PEXRST, FLR/SBR, and Software)

○ Refer to PCIE specifications for how to reset PCIE devices through PEXRST and FLR/SBR.
○ The term Software refers to the software methods of rebooting/restarting/resetting a

component by using command line tools or the Redfish APIs to trigger the resets.
Activating images may require system downtime and may disrupt service. If activation is disruptive,
down time shall be in the order of minutes for baseboards with Accelerator Mgmt Controller and
order of seconds for baseboards without Accelerator Mgmt Controller.

3.1.4 Firmware Update protocols

For baseboards containing accelerator BMC, host BMC will use Redfish Firmware Update (by using
the UpdateService schema) to send accelerator BMC firmware updates of all devices in the

https://www.dmtf.org/sites/default/files/standards/documents/DSP0267_1.1.0.pdf
https://redfish.dmtf.org/schemas/v1/UpdateService_v1.xml

PAGE 18

baseboard packaged in a PLDM bundle (as per DMTF DSP0267). Accelerator BMC will then use
PLDM to download images to all the devices on the baseboard.

For boards without accelerator BMC, host BMC uses PLDM over MCTP (as per DMTF DSP0267) to
download images to all the devices on the board.

Using these standards for firmware updates helps with interoperability, reduces or eliminates the
need for interdependent device firmware, and essentially makes it vendor-neutral.

3.1.5 Firmware update idempotency

Vendors shall support the option to force FW update even if FW versions match to the one in the
update package. By default, devices shall perform FW version check and skip update if version
matches to the one from the package.

3.1.6 Firmware update dependencies

There shall be no dependency between FW of different devices in a product. Furthermore, one must
be able to directly update between any two FW versions without any update to an intermediate
version, as long as there are no rollback restrictions as defined in Section 4.2. At a minimum, the
supported and tested FW update path shall include:

1) Factory shipped version to latest released version
2) Update from FW version released 6 months prior to the latest version.
3) Update from a newer version of FW to an older version of FW released 6 months prior

3.1.7 Firmware date compatibility

Configuration and meta data for the firmware data stored in non-volatile memory will be backward
and forward compatible with other versions of the firmware. This is necessary to enable updates
between different versions without losing stored data, such as configs, tuning parameters etc.

3.1.8 Non-disruptive updates

As firmware update copy may happen during production, it shall not disrupt any production activity.
Specifically, the following operations shall not be impacted and continue to meet any SLAs:

- Runtime stack and application performance
- Inband telemetry
- Out of band telemetry
- Security operations such as Attestation.

3.1.9 Firmware update synchronization

Firmware devices shall prevent firmware update from starting if the previous firmware update is still
in progress.

PAGE 19

3.1.10 Restore previous image upon cancellation of firmware update

Firmware Device shall provide capability to restore/rollback to previous firmware if a firmware
update operation is interrupted or canceled for any reason.

3.2 Firmware Rollback Prevention

Firmware should not be rolled back to older versions which may have security flaws. Following
two sections address requirements to achieve this capability.

3.2.1 Checks to stop firmware rollback

To prevent usage of old (and possibly compromised) FW, a field needs to be supported for both SOC
EFUSEs and FW binary image. This new field will be referred to in this document as ‘FW Security
Version’ (SVN). Upon update and upon boot, the device FW or HW (depends on the device) will derive
the FW security version from the EFUSEs and compare it to the SVN field in the FW binary image. In
case the FW image SVN is not equal to or greater than the EFUSEs derived value, the device must
indicate relevant error and stop the update.

3.2.2 Explicit command to update security versions on device

Devices shall support capability to update the security version stored in their EFUSEs upon receiving
an explicit command. Updating the security version should not be updated automatically during
firmware update. Further, updates of the security version should not cause a disruption to the
service.

3.3 Firmware Image Format

Requirement: Firmware shall be made available in PLDM for firmware update package format, as
described in DSP0267.

Here are key highlights of using this package format:

● The package format allows targeting one/several/all device types (for example, all GPUs, all
Retimers, PCIe Switches, and so on). This provides the flexibility to update a specific device in
a system, optimizing update time for complex GPU systems that need only one device
updated. This also allows one package to update all devices in a system at one time.

● The package format accommodates a scenario where certain instances of a device require a
firmware image, and the remaining instances of the device require a different firmware
image.

● If a certain firmware image is applicable to N instances of a device type, the package will
comprise only one copy of that image.

● The package format uses standard identifiers (such as UUID) to target device types.

https://www.dmtf.org/sites/default/files/standards/documents/DSP0267_1.1.0.pdf

PAGE 20

3.4 Firmware Image Size

Firmware package shall not exceed 200MB in size.

3.5 Firmware Fungibility

A vendor may fulfill orders of a particular product with physically different, yet fungible
(interchangeable), units. These differences may require a different firmware to be installed on the
nonvolatile storage for the firmware device storage. This specification extends the definition of
fungibility such that the same firmware image or firmware bundle provided for the product must
support all fungible units.

NOTE: Product hardware may evolve over time for a variety of reasons, such as to improve reliability
or react to supply chain deficiencies. The vendor is expected to notify the customer of future
hardware changes as well as expected firmware changes. However, the validation and acceptance of
physically different, yet fungible, units is outside the scope of this specification.

The requirement for a firmware image or firmware bundle to support all fungible units extends only
to units with the same orderable part number. The goal of the requirement is to ensure that a
particular instance can be managed without the disruption of new firmware update development
when the underlying hardware changes. If the hardware changes are significant enough that the
vendor no longer offers the same orderable part number, then a firmware image or firmware
bundle that supports both the discontinued product and the replacement product is not required by
this specification.

The firmware image or firmware bundle for fungible units must be backward compatible, but is not
required to be forward compatible. A firmware image or firmware bundle is not required to support
future fungible HW variations not known at the time of firmware release. However, the firmware
image or firmware bundle is required to support all previous fungible HW variations known at the
time of firmware release, including those that have been discontinued.

When different firmware is required for fungible units of the same product, the firmware update
process for hyperscalers should remain unchanged. The firmware update process must include
detection of the hardware and be able to select and install the corresponding firmware image.
Firmware fungibility may be implemented using either a proprietary design or a design based on a
firmware update standard like DSP0267 (PLDM Type 5).

The PLDM Type 5 matching algorithm requires that all Device Descriptors in Firmware Device Record
must match a descriptor returned by the QueryDeviceIdentifiers command. If a unique firmware
image must be transferred to the firmware device for update, then the following are required:

● The set of descriptors returned by QueryDeviceIdentifiers must uniquely identify the
variation between fungible units

● The firmware update package must have multiple Firmware Device Records, one for each of
the uniquely identifiable fungible unit variations

https://www.dmtf.org/sites/default/files/standards/documents/DSP0267_1.1.0.pdf

PAGE 21

● The Component Image information for the Firmware Device Record must describe and point
to the corresponding firmware image for that fungible unit variation

Standard PLDM Type 5 device descriptors, such as PCI Device ID, may necessarily be the same
between fungible unit variations. To describe the variations, one or more Vendor Defined
descriptors may be used. Defining a specific set of descriptors is an implementation detail beyond
the scope of this specification.

The ability for the update agent to detect which firmware image to send to the device is an
optimization. The device itself should also check the target of the firmware image it receives and
reject or fail the update if it is not correct for that unit variant. The information used by the device to
perform the check must be trusted (signed) in order to satisfy the requirements for secure firmware
update.

3.6 Single shot firmware update

The Firmware device Product shall support all firmware component images as part of the PLDM
firmware update package as defined in the header structure in DSP0267. The BMC will process the
firmware bundle and update the firmware in parallel using a single package.

The device shall also provide the option to update one or more firmware in the firmware bundle as
selected by the user.

3.7 Firmware Image redundancy

Every firmware device shall support a minimum of 2 copies of firmware that the component can
boot from. The Firmware Device can choose to implement any scheme of choice, e.g Active/Backup,
Active/Golden. Active/Known Good. Vendors may choose to implement redundancy using a second
discrete EEPROM or a distinct partition on an EEPROM.

3.8 Firmware resiliency

3.8.1 Single Fault

Here are some reasons that firmware updates may fail:
● Transient failures that might occur due to bit flips that are the result of cosmic radiation,

overheating issues, or errors that might occur during one boot cycle and go away during the
next boot.

● Bit errors on packets that are sent over physical transport like I2C/SPI
● Hardware degradation.
● Any interruptions to the FW Update process such as Power loss, Machine Checks etc.

To address these failure modes, and minimize human intervention to recover from failed firmware
updates, the vendor shall use the following principles and approaches:

1) Implement detection mechanism for FW update failure
2) Implement automatic switchover to the redundant copy of FW
3) Support FW Update telemetry in Section 3.10

https://www.dmtf.org/sites/default/files/standards/documents/DSP0267_1.1.0.pdf

PAGE 22

4) Optionally, the GPU/Accelerator product may choose to automatically recover the failed
image from the working image.

3.8.2 Double Fault

If, during the time interval between copying the image to the device and arming, the current
firmware on the device crashes and fails to boot again (double fault), the device shall have a
recovery mechanism to copy the current image and boot itself. BMC or AMC should be able to copy
current or some working image to recover the device. This recovery mechanism is required since the
device will not failover to the inactive image as the device is not armed yet.

3.9 Firmware telemetry

Firmware devices shall support querying of the following firmware telemetry:
1) FW version information of all images saved on each device
2) Information on which image device booted off of
3) Firmware Device Boot Result (succ/auth. _fail/boot_fail)
4) Firmware Device Update Result (succ/auth. _fail/boot_fail)
5) Firmware Device Fallback Reason (auth._fail/boot_fail)
6) Activation options
7) Activation status
8) Flash write-protect state

3.10 Debug messages for runtime DC Ops

Vendor shall provide clear actionable debug messages for status and error conditions:
- All logs must be in plain text, not encrypted.
- Clear Actionable Status Codes for FW Update operations (e.g. state of progress, recoverable

errors, failures)

4. Redfish Update Service

4.1 Common properties

The following properties are defined for inclusion in every Redfish schema, and therefore may be
encountered in any response payload. They are documented here to avoid repetition in the
response property tables and must be included in every Redfish API response.

PAGE 23

Property Type Attribute Notes

@odata.id string Read-only The unique ID for the resource

For UpdateService, it shall be “/redfish/v1/UpdateService”

@odata.type string Read-only The type of a resource.

For UpdateService, , it shall be
“#UpdateService.v1_11_0.UpdateService”

Description string Read-only Human readable description for the resource

Id string Read-only The ID that uniquely identifies the Resource within the
collection that contains it. This value is unique within a
collection

For UpdateService, it shall be “UpdateService”

Name string Read-only The human-readable moniker for a Resource. The type is
string. The value is NOT necessarily unique across
Resource instances within a collection

For UpdateService, it shall be “Update Service”

Table 6: GPU FW update Redfish API properties

4.2 Firmware Inventory and Update Service

4.2.1 GET - UpdateService

A GET on the UpdateService resource should provide a response that describes the update service
and the properties for the service itself with links to collections of firmware and software inventory.
The update service also provides methods for updating software and firmware of the resources in a
Redfish service.

URI: GET /redfish/v1/UpdateService

PAGE 24

Input parameters: None

Schema Version: UpdateService.v1_11_0.json

Property Type Attribute Notes Required/

Optional

FirmwareInventory Object An inventory of firmware Required

HttpPushUri String Read-only The URI used to perform
an HTTP or HTTPS push
update to the update
service.

Required

HttpPushUriOptions Object The options for
HttpPushUri provided
software updates

Required

HttpPushUriOptionsBusy Boolean Read-write An indication of whether
a client has reserved the
HttpPushUriOptions
properties for software
updates

Optional

HttpPushUriTargets Array Read-write An array of URIs that
indicate where to apply
the update image

Optional

HttpPushUriTargetsBusy Boolean Read-write An indication of whether
any client has reserved
the HttpPushUriTargets
property

PAGE 25

MaxImageSizeBytes Integer Read-only The maximum size in
bytes of the software
update image that the
service supports

Required

MultipartHttpPushUri String Read-only The URI used to perform
a Redfish specification
defined Multipart HTTP
or HTTPS push update to
the update service

Required

RemoteServerCertificates Object The link to a collection of
server certificates of the
server referenced by the
ImageURI property in
SimpleUpdate.

Optional

ServiceEnabled Boolean Read-write An indication of whether
this service is enabled

Required

SoftwareInventory Object An inventory of software Required

VerifyRemoteServerCertifi
cate

Boolean Read-write An indication of whether
the service will verify the
certificate of the server
referenced by the
ImageURI property in
SimpleUpdate prior to
sending the transfer
request

Optional

Table 7: Redfish get UpdateService property

Example:

{

PAGE 26

"@odata.type": "#UpdateService.v1_11_0.UpdateService",
"@odata.id": "/redfish/v1/UpdateService",
"Id": "UpdateService",
"Name": "Update Service",
"HttpPushUri": "<vendor-specific URI for push update>",

"HttpPushUriTargets": [],
"HttpPushUriOptions": {

"ForceUpdate": false,
"HttpPushUriApplyTime": {

"ApplyTime": "OnReset"
}

},
"MaxImageSizeBytes": 209715200,
"ServiceEnabled": true,
"FirmwareInventory": {

"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory"
},
"SoftwareInventory": {

"@odata.id": "/redfish/v1/UpdateService/SoftwareInventory"
},

}

4.2.2 GET - SoftwareInventory

The SoftwareInventory property is a resource collection containing the set of software components
generally like drivers execute within a host operating system. Software in this collection is generally
updated using platform-specific methods or utilities

{
"@odata.type":
"#SoftwareInventoryCollection.SoftwareInventoryCollection",
"@odata.id": "/redfish/v1/UpdateService/SoftwareInventory",
"Name": "Software Inventory Collection",
"Members@odata.count": 1,
"Members": [

{
"@odata.id":

"/redfish/v1/UpdateService/SoftwareInventory/GPUDriver "
}

]
}

PAGE 27

4.2.3 GET - FirmwareInventory

The FirmwareInventory property is a resource collection containing the set of firmware components
generally referred to as platform firmware or that does not execute within a host operating system.
Software in this collection is generally updated using platform-specific methods or utilities

{
"@odata.type": "#SoftwareInventory.v1_4_0.SoftwareInventory",
"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory/ManagementController",
"Id": " ManagementController",
"Name": " ManagementController Firmware",
"Status": {
"State": "Enabled",
"Health": "OK"

},
"SoftwareId": "1",
"Manufacturer": "Vendor",
"Updateable": true,
"WriteProtected": false,
"Version": "1.0.0",
"RelatedItem": [
{
"@odata.id": "/redfish/v1/Chassis/ ManagementController0"

}

]

}

4.2.4 POST - Updating Firmware

For each updateable component the SimpleUpdate action can be invoked to update the firmware.

Actions / Description Parameter Required/

Optional

PAGE 28

StartUpdate – This action
starts the firmware
update

None Optional

SimpleUpdate - This
action updates software
components

ImageURI The URI of the software image
to install

Required

Targets An array of URIs that indicate
where to apply the update
image

TransferProtocol The network protocol that the
update service uses to retrieve
the software image file located
at

the URI provided in ImageURI.
This parameter is ignored if the
URI provided in ImageURI

contains a scheme.

Optional

Username The user name to access the
URI specified by the ImageURI
parameter

Optional

Password The password to access the URI
specified by the ImageURI
parameter.

Optional

Property Type Attribute Notes Required/O
ptional

FirmwareInventory Object An inventory of firmware Required

PAGE 29

HttpPushUri String Read-only The URI used to perform an
HTTP or HTTPS push update
to the update service.

Optional

HttpPusUriOptions Object The options for HttpPushUri
provided software updates

Optional

HttpPushUriOptionsBusy Boolean Read-write An indication of whether a
client has reserved the
HttpPushUriOptions
properties for software
updates

Optional

Table 8: Redfish POST UpdateService

4.3 TaskService

4.3.1 Task

Task provides asynchronous capability to track the progress of the Firmware update progress
including status, progress.

Property Type Attribute Notes Required/

Optional

PAGE 30

TaskState String Read-only This property shall
indicate the state of the
task

Allowed values are

· “New”

· “Starting”

· “Running”

· “Suspended”

· “Interrupted”

· “Pending”

· “Stopping”

· “Completed”

· “Killed”

· “Exception”

· “Cancelled”

Required

PAGE 31

TaskStatus String Read-Only This shall be set only up
on task completion

“OK” - If all updates
successfully completed

“Warning” - If one or
more of the updates
completed with
warnings

“Critical” if one or more
of the updates had
critical severity failures

Required

StartTime String Read-only The date and time when
the task was started.

Required

EndTime String Read-only The date and time when
the task was completed.
This property will only
appear when the task is
complete.

Required

PAGE 32

TaskStatus Boolean Read-only The completion status of
the task.

Allowed values are

· “Critical”

· “Warning”

· “OK”

Required

PercentComplete Number Read-only The completion
percentage of this task.

Required

Messages Object Read-only This property shall
contain an array of
messages associated
with the task.

Required

TaskMonitor String Read-only The URI of the Task
Monitor for this task.

Required

Table 9: Redfish Task Service property

4.4 Redfish Error Reporting for Firmware Update

Firmware update processes can run into several types of failures. This section contains various error
scenarios and fault descriptions that the device should support.

4.4.1 Message Registry

Devices shall support DMTF Redfish standards defined Message registry (as defined in DSP2065).

PAGE 33

Property Type Attribute Notes Required/

Optional

"@odata.type String Read-only This property shall
indicated the supported
Message Registry

“#MessageRegistry.v1_4
_1.MessageRegistry”

Required

MessageID String Read-Only Property as defined in
the Redfish
specification.

Required

Message String Read-Only Property contains
human readable
message string

Required

MessageArgs Collection Read-Only Property contains an
array of arguments to
support qualify the
message

Optional

Severity String Read-Only Property indicates the
severity of the failure.

Supported “OK”,
“Warning”, “Critical”

Required

Resolution String Read-Only Property contains the
device indicated
recommendation on
recovering from the
failure or next steps

Required

Table 10: Redfish Message Registry

PAGE 34

4.4.2 Immediate Failures

Immediate failures are types of failures, where the device responds back immediately to the
Orchestrator as response to invoking with the UpdateService URI. No background task monitoring is
started due to the nature of error. Device would respond back with TaskState, TaskStatus and Error
with Message (as defined in Message Registry)
Device shall support the following immediate failure modes

Failure mode HTTP
error
code

MessageID Other details

Another Firmware
Update already in
progress

400 Update.1.0.UpdateInProgress Message:”Another firmware
update already in progress”
MessageArgs: null
Resolution: “Wait for the
previous operation to complete
before attempting another one”

Internal Error 500 Base.1.8.1.InternalError Message:”The request failed due
to an internal service error. The
service is still operational”
MessageArgs: null
Resolution:”Resubmit the
request. If the problem persists,
consider resetting the service”

Incoming file is not
PLDM file format

500 Base1.8.1.ResourceAtUriInUnkno
wnFormat

Message:”The resource at
<file/path> is in a format not
recognized by the service”
MessageArgs: “<filename of the
uploaded file>”
Resolution:”Upload a file
supported by this device”

Insufficient Storage
Space

500 Base.1.8.1.InsufficientStorage Message:””
MessageArgs:
Resolution:”Reset the baseboard
and retry the operation.",”

Incoming file exceeds
max device supported

500 Base.1.8.1.PayloadTooLarge Message:”Requested file size
exceeds the maximum
supported for this <service>.”
MessageArgs:
“"/redfish/v1/UpdateService/"”
Resolution:”Firmware package is

PAGE 35

greater than allowed size. Check
the file before continuing”

Table 11: Redfish Immediate Failure codes

4.4.3 Failure during background/async operation

Once the device accepts the Update Service Firmware update command successfully, it returns a
Task ID. Orchestrator keeps monitoring the task for completion. Completion can results in failure
scenarios. Devices that support multiple firmware components update in a single bundle, each
firmware component can return an individual completion (success or failure).

Device shall support the following immediate failure modes

Failure mode HTTP
error
code

MessageID Other details

NVRAM ownership
failed

(SPI, ..)

200 ResourceEvent.1.1.0.ResourceError
sDetected

Message:”The resource property
'Component Name' has detected
errors of type 'SPI Access
Error'.",”
MessageArgs: [“Component
Name”, “SPI Access Error”]
Resolution: “Retry few times,
reset the device and retry”

PLDM meta-data
corrupt

Message:””
MessageArgs:
Resolution:

Image has lower
security version

Message:””
MessageArgs:
Resolution:

Key Revocation
failure

Message:””
MessageArgs:
Resolution:

SKU Mismatch Message:””
MessageArgs:
Resolution:

Table 12: Background Failure codes

PAGE 36

4.4.4 Firmware update client workflows

The workflow below shows how the API’s discussed in section 4 work together to orchestrate FW
update from clients perspective. This workflow is generic in the sense that it deals with HTTP
response codes, Redfish Task, timeouts/retries and Redfish messages.

Following workflow orchestrates different states to facilitate “one-shot” FW update where a single
URI combines Copy and ARM in one step from the client’s perspective.
1. Start at IDLE state.

2. Check whether there is a current firmware update.

This can happen when an error occurs on the client side, and it was reset after triggering the

firmware update.

Get /redfish/v1/TaskService/Tasks

If Task exists such that TaskState == Running AND
Update.1.0.TargetDetermined in Task Messages array

Move to UPDATE state, step 4 (this means a FW update is in progress)

Else If Task exists such that TaskState == Completed AND
Update.1.0.TargetDetermined in Messages array

Exit at IDLE state (a FW update has completed and has to be activated)

Else
Set RETRY_COUNT = 0

3. Provision the client with the firmware bundle.

4. Transfer the image to AMC.

a. Start a five-minute timer, where the expiry handler is XFER_TIMER_HANDLER.
b. Transfer the image by using POST -T <firmware bundle>

https://${amc}/redfish/v1/UpdateService.
If HTTP_RESONSE == 202 AND

HAS_LOCATION_HEADER AND
TaskState == Running AND
TaskStatus == OK

Reset RETRY_COUNT = 0
Cancel timer from 3.a
Move to step 4

Else
If RETRY_COUNT == 3

Exit to FAIL State
Else

PAGE 37

Inc RETRY_COUNT
Restart step 3 after 5 minutes

XFER_TIMER_HANDLER, which handles no response over Redfish:
If RETRY_COUNT == 3

Exit to FAIL State
Else

Inc RETRY_COUNT
Restart step 3 after 5 minutes

5. Monitor the firmware update progress.

a. Start a five-minute timer, and the handler is UPDATE_TIMER_HANDLER.
b. Every five minutes, get the Redfish firmware update Task progress: GET

/redfish/v1/TaskService/Tasks/{TaskId}

If TaskState == Completed AND
TaskStatus == OK AND
PercentComplete == 100

Stop Timer from 4.a
Update Completed - exit to IDLE state

Else If TaskState == Running AND
TaskStatus == OK AND
PercentComplete == <Changed from last poll>

Cancel Timer from 4.a
Else

If RETRY_COUNT == 3
Report Task Messages array
Exit to FAIL State

Else
Inc RETRY_COUNT
Restart step 3 after 5 minutes

UPDATE_TIMER_HANDLER, which handles no response over Redfish:
If RETRY_COUNT == 3

Exit to FAIL State
Else

Inc RETRY_COUNT
Restart step 3 after 5 minutes

Following workflow orchestrates different states to facilitate “split Copy/Arm” FW update

1. Start at INIT state.

PAGE 38

Set RETRY_COUNT = 0

2. Provision the client with the firmware bundle, which moves the firmware update client to the COPY

state.

3. Copy/Stage firmware bundle in HMC

This state can be achieved by two types of Redfish API’s
● Unstructured HTTP push update
● Multi-Part HTTP push update

a. Start a five-minute timer, where the expiry handler is XFER_TIMER_HANDLER.
b. Transfer the firmware bundle by using Unstructured HTTP push update

i. PATCH {"HttpPushUriOptions": {
"HttpPushUriApplyTime": { "ApplyTime":
"OnStartUpdateRequest"}}}

ii. POST -T <firmware bundle>
https://${amc}/redfish/v1/UpdateService/update

Transfer the firmware bundle by using Multi-part HTTP push update
i. POST https://${amc}/redfish/v1/UpdateService/update-multipart

Content-Type: multipart/form-data;
boundary=---------------------------d74496d66958873e
Content-Length: <computed-length>...
------------------------------------d74496d66958873e
Content-Disposition: form-data; name="UpdateParameters"
Content-Type: application/json
{

"@Redfish.OperationApplyTime": "OnStartUpdateRequest",
}
Content-Disposition: form-data; name="UpdateFile";
filename="<firmware bundle>"
Content-Type: application/octet-stream

<firmware bundle binary>

IF HTTP_RESONSE == 201 AND
HAS_LOCATION_HEADER

IF RETRY_COUNT == 3
Exit to FAIL State

ELSE
Inc RETRY_COUNT
Restart step 3 after 5 minutes

XFER_TIMER_HANDLER, which handles no response over Redfish:
If RETRY_COUNT == 3

PAGE 39

Exit to FAIL State
ELSE

Inc RETRY_COUNT
Restart step 3 after 5 minutes

4. Arm the copied firmware to be ready for update

a. Start a five-minute timer, where the expiry handler is

START_UPDATE_TIMER_HANDLER.
b. Initiate firmware update by using

POST /redfish/v1/UpdateService/Actions/UpdateService.StartUpdate

IF HTTP_RESONSE == 202 AND
HAS_LOCATION_HEADER AND
TaskState == Running AND
TaskStatus == OK

Reset RETRY_COUNT = 0
Cancel timer from step 4.a
Move to step 5

ELSE
IF RETRY_COUNT == 3

Exit to FAIL State
ELSE

Inc RETRY_COUNT
Restart step 4 after 5 minutes

START_UPDATE_TIMER_HANDLER, which handles no response over Redfish:
If RETRY_COUNT == 3

Exit to FAIL State
ELSE

Inc RETRY_COUNT
Restart step 4 after 5 minutes

5. Monitor the firmware update progress. It should move to the ARM state

a. Start a five-minute timer, and the handler is UPDATE_TIMER_HANDLER.
b. Every five minutes, get the Redfish firmware update Task progress: GET

/redfish/v1/TaskService/Tasks/{TaskId}

If TaskState == Completed AND
TaskStatus == OK AND
PercentComplete == 100

Stop Timer from step 5.a
Update Completed - exit to IDLE state

ELSE IF TaskState == Running AND

PAGE 40

TaskStatus == OK AND
PercentComplete == <Changed from last poll>

Cancel Timer from step 5.a
ELSE

IF RETRY_COUNT == 3
Report Task Messages array
Exit to FAIL State

ELSE
Inc RETRY_COUNT
Restart step 4 after 5 minutes

UPDATE_TIMER_HANDLER, which handles no response over Redfish:
If RETRY_COUNT == 3

Exit to FAIL State
ELSE

Inc RETRY_COUNT
Restart step 4 after 5 minutes

5. PLDM Update

5.1. PLDM Update Commands

The table below indicates the set of PLDM commands that should be supported by all GPUs as part
of the Firmware Update & Device Inventory discovery commands:

Device Inventory Discovery Commands

Command Code Command Name

0x01 QueryDeviceIdentifiers

0x02 GetFirmwareParameters

Firmware Update Commands

Command Code Command Name

PAGE 41

0x10 RequestUpdate

0x11 GetPackageData (Optional*)

0x12 GetDeviceMetaData (Optional*)

0x13 PassComponentTable

0x14 UpdateComponent

0x15 RequestFirmwareData

0x16 TransferComplete

0x17 VerifyComplete

0x18 ApplyComplete

0x19 GetMetaData (Optional*)

0x1A ActivateFirmware

0x1B GetStatus

0x1C CancelUpdateComponent

0x1D CancelUpdate

0x21 GetComponentOpaqueData (Optional*)

Table 13: PLDM Update commands

PAGE 42

Optional* :- The commands which are marked as optional since it depends on the Firmware Update
Package format and the capabilities from the device that is supported.

Requests and response format for the above commands should be of the same format as DSP0267
v1.2.0 specification. The request and response formats for the commands are present in Appendix
below.

The “CompletionCode” returned in the response should be of the format of PLDM_BASE_CODES
defined according to DSP0240 v1.1.0 specification. In addition, PLDM completion codes specific for
firmware update that are beyond the scope of PLDM_BASE_CODES should be supported according
to the format as defined in DSP0267 v1.2.0 specification.

5.2 PLDM Update Timing Requirements

The timings as specified in DSP0246 v1.2.0 specification needs to be supported from the endpoints.

Timing Min Max Description

Number of request
retries when a
response is received
that requires a retry

2 Total of three tries, minimum: the original try
plus two retries.

Update mode idle
timeout

60s 120s Amount of time before the FD/FDP shall exit
from update mode if no command is received
from the Update Agent when it’s expected,
during the firmware update process

Retry request for
firmware data

1s 5s Amount of time for the FD/FDP to wait before
resending a RequestFirmwareData command
after receiving a RETRY_REQUEST_FW_DATA
code from the UA.

Retry interval to send
next cancel command

500ms 5s Amount of time to wait before the UA sends an
additional CancelUpdate or
CancelUpdateComponent command.

PAGE 43

Request firmware data
idle timeout

60s 90s Amount of time for the Update Agent to cancel
the component update if no command is
received from the FD/FDP when it’s expected,
during the component image transfer stage.

State change timeout 180s Amount of time for the Update Agent to wait
before canceling the component update if the
ProgressPercent value in the GetStatus
command remains unchanged

Retry request for
update

1s 5s Amount of time for the UA to wait before
resending a RequestUpdate or
RequestDownstreamDevice Update command
after receiving a RETRY_REQUEST_UPDATE
code from the FD/FDP

Get Package Data
timeout

1s 5s Amount of time for the UA to wait to receive
the GetPackageData command if the FD/FDP
indicated that it would send that command in
the response to RequestUpdate or
RequestDownstreamDeviceUpdate. The UA
shall send CancelUpdate if this timer expires

Complete Commands
Timeout

600s Amount of time for the UA to wait for a
TransferComplete, VerifyComplete, or
ApplyComplete command if the
ProgressPercent value in the GetStatus
command is set to 0x65 (not supported by
FD/FDP).

Table 14: PLDM Update timing requirements

6. File Format

Supported file format for Redfish Update Service is DMTF PLDM File format as described in DMTF
DSP0267 v1.2.

PAGE 44

6.1 File Format

Package Header Information

Firmware Device ID Records & Descriptors

Downstream Device ID Records & Descriptors

Component Image Information

Package Header Checksum

Component Image 1

Component Image 2

…

Component Image N

Security Signature

6.2 Package Security

This specification enhances the requirement of DSP0267 from making signing of the file from
optional to mandatory. The entire file needs to be signed with ECDSA-P384+SHA-384 algorithm.

The entire bundle needs to be enveloped with a Security signature appended at the end of the file.
Security signature shall contain

PAGE 45

· Security versions

· Device binding

· Keys/Hashes of key

· Signature

Each Firmware component in the file bundle is individually signed with ECDSA-P384+SHA-384
algorithm. Each component verifies the signature during the firmware update process.

PAGE 46

7. License - Open Web Foundation (OWF) CLA

Contributions to this Specification are made under the terms and conditions set forth in Open
Web Foundation Modified Contributor License Agreement (“OWF CLA 1.0”) (“Contribution
License”) by:

Google, Microsoft, NVIDIA

Usage of this Specification is governed by the terms and conditions set forth in Open Web
Foundation Modified Final Specification Agreement (“OWFa 1.0.2”) (“Specification
License”).

You can review the applicable OWFa1.0 Specification License(s) referenced above by the
contributors to this Specification on the OCP website at
http://www.opencompute.org/participate/legal-documents/. For actual executed copies of either
agreement, please contact OCP directly.

Notes:

1. The above license does not apply to the Appendix or Appendices. The information in
the Appendix or Appendices is for reference only and non-normative in nature.

NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED
BY OCP "AS IS" AND OCP EXPRESSLY DISCLAIMS ANY WARRANTIES (EXPRESS,
IMPLIED, OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO
THE SPECIFICATION. NOTICE IS HEREBY GIVEN, THAT OTHER RIGHTS NOT GRANTED
AS SET FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD PARTIES
WHO DID NOT EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE
IMPLEMENTATION OF OR COMPLIANCE WITH THIS SPECIFICATION. OCP IS NOT
RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE REQUIRED IN
ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK AS TO IMPLEMENTING
OR OTHERWISE USING THE SPECIFICATION IS ASSUMED BY YOU. IN NO EVENT WILL
OCP BE LIABLE TO YOU FOR ANY MONETARY DAMAGES WITH RESPECT TO ANY
CLAIMS RELATED TO, OR ARISING OUT OF YOUR USE OF THIS SPECIFICATION,
INCLUDING BUT NOT LIMITED TO ANY LIABILITY FOR LOST PROFITS OR ANY
CONSEQUENTIAL, INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES OF ANY
CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS
SPECIFICATION, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING
NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

http://www.opencompute.org/participate/legal-documents/

PAGE 47

8. OCP Tenets

Openness

● This specification was developed via close and open collaboration between industry
partners and competitors.

● All specifications and interfaces produced through this effort will be available to all
OCP members.

Efficiency

● The goal of this specification is to make integration of GPUs into Hypercaler solutions
seamless, reducing the toil for both the supplier and the Hyperscaler consumers.

● A companion to this effort is the OCP compliance tool that will enable automated
validation of these interfaces, ensuring reduced toil and high-quality products.

Impact

● This document represents the first industry initiative to standardize GPU requirements
between suppliers and hyperscale consumers.

● The advances in this document are expected to have significant impact on quality and
time-to-market for GPU systems deployed by hyperscalers.

● These advances will also be applicable and beneficial to enterprise deployments of GPU
systems.

Scale

● This specification applies to very large scale GPU system deployments in Hyperscale
Data Centers

Sustainability

● The profiles defined in this document enable cross-generational commonality for key
functionality of GPU parts, enabling logistics to support longer lifespan of GPU parts and
a healthy secondary market for these parts.

PAGE 48

About Open Compute Foundation
At the core of the Open Compute Project (OCP) is its Community of hyperscale data center operators, joined

by telecom and colocation providers and enterprise IT users, working with vendors to develop open

innovations that, when embedded in product are deployed from the cloud to the edge. The OCP

Foundation is responsible for fostering and serving the OCP Community to meet the market and shape the

future, taking hyperscale led innovations to everyone. Meeting the market is accomplished through open

designs and best practices, and with data center facility and IT equipment embedding OCP

Community-developed innovations for efficiency, at-scale operations and sustainability. Shaping the future

includes investing in strategic initiatives that prepare the IT ecosystem for major changes, such as AI & ML,

optics, advanced cooling techniques, and composable silicon. Learn more at www.opencompute.org.

http://www.opencompute.org

PAGE 49

Appendix A. [Redfish API Example]
1.  Initiate a firmware update for all devices on the baseboard.
You must apply the firmware update package released by Vendor as is.

a. Determine where to perform an HTTP POST of the firmware update package.
The URI to which the package is to be POSTed is in the HttpPushUri property.
curl http://${smc}/redfish/v1/UpdateService
{
"@odata.id": "/redfish/v1/UpdateService",
"@odata.type": "#UpdateService.v1_4_0.UpdateService",
"Description": "Service for Software Update",
"FirmwareInventory": {
"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory"
},
"HttpPushUri": "/redfish/v1/UpdateService/update",
"HttpPushUriOptions": {
"HttpPushUriApplyTime": {
"ApplyTime": "OnReset"
}
},
"Id": "UpdateService",
"Name": "Update Service",
"ServiceEnabled": true

b. Push the firmware update package to the SMC using HTTP POST:
curl -X POST -T <firmware update package>
http://${smc}/redfish/v1/UpdateService/update
See step 3 for information about the response to this request.

2. Initiate the firmware update for specific devices on the baseboard.
a. Specify the set of URIs to which the firmware update package should be targeted.
These URIs will be passed to the HttpPushUriTargets property. The URIs should be of
FirmwareInventory resources. Here is an example where only GPU firmware will be
updated:
curl -X PATCH -d '{ "HttpPushUriTargets":[
“/redfish/v1/UpdateService/FirmwareInventory/DEVICE_1”,
“/redfish/v1/UpdateService/FirmwareInventory/ DEVICE_2”,
“/redfish/v1/UpdateService/FirmwareInventory/ DEVICE_3”,
“/redfish/v1/UpdateService/FirmwareInventory/ DEVICE_4”,
]}' http://${smc}/redfish/v1/UpdateService

b. Repeat step 1b.

Note: The firmware update package needs to be pushed (HTTP POSTed) only once, regardless of the
number of URIs in HttpPushUriTargets. The HttpPushUriTargets allows users to select a subset of firmware

PAGE 50

components for an update after the DSP0267 package matching. Clearing HttpPushUriTargets allows
users to do firmware updates according to DSP0267 package matching.
3. Monitor the firmware update progress.

Redfish-based firmware update (step 1b) is an asynchronous operation (see DSP0266). The
SMC’s Redfish service will implement the TaskService schema and return a Redfish Task as
the
response to the HTTP post and a 202 Accepted HTTP response code:
< HTTP/1.1 202 Accepted
< Location: /redfish/v1/TaskService/Tasks/7/Monitor
< Retry-After: 30
< Content-Type: application/json
<
{
"@odata.id": "/redfish/v1/TaskService/Tasks/7",
"@odata.type": "#Task.v1_4_3.Task",
"Id": "7",
"TaskState": "Running",
"TaskStatus": "OK"
}

The Task URI in odata.id will implement the Task schema and use the task URI to monitor the
progress of the firmware update. Here are the key properties of the task resource:
● TaskState
Indicates current state of the task, which can be Running, Stopping, Completed,
Exception, or Canceled.
● TaskStatus
This property will indicate completion status of the task. After the task completes (success/fail),
this property will show the completion status of the task, which can be OK, Warning, or
Critical.
● Messages array
The Messages array in the Task resource will contain messages that a Redfish client can use to
track progress and to complete actions, such as a Reset operation, where user intervention is
required. Step 4 lists the key Message Registry entries that the SMC will add to the Messages
array for the firmware update operation. A Redfish client can poll the Task to retrieve the task
progress information, such as TaskState, PercentComplete, and Messages.
● Task Resource Response examples
Task Resource Response: When the task is running

< HTTP/1.1 200 OK
< Content-Type: application/json
{
"@odata.id": "/redfish/v1/TaskService/Tasks/7",
"@odata.type": "#Task.v1_4_3.Task",
"Id": "7",
"Messages": [
{
"@odata.type": "#Message.v1_0_0.Message",

PAGE 51

"Message": "The task with id 7 has started.",
"MessageArgs": [
"7"
],
"MessageId": "TaskEvent.1.0.1.TaskStarted",
"Resolution": "None.",
"Severity": "OK"
},
{
"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": "The target device 'FW_SMC_0' will be updated
with image 'cec1736ApFw-12345678'.",
"MessageArgs": [
"FW_SMC_0",
"cec1736ApFw-12345678"
],
"MessageId": "Update.1.0.TargetDetermined",
"Resolution": "None.",
"Severity": "OK"
},
{
"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": "Image 'cec1736ApFw-12345678' is being transferred to
'FW_SMC_0'.",
"MessageArgs": [
"cec1736ApFw-12345678",
"FW_SMC_0"
],
"MessageId": "Update.1.0.TransferringToComponent",
"Resolution": "None.",
"Severity": "OK"
}
],
"Name": "Task 7",
"Payload": {
"HttpHeaders": [
"Host: 192.168.31.1",
"User-Agent: curl/7.64.0",
"Accept: */*",
"Content-Length: 67105992"
],
"HttpOperation": "POST",
"JsonBody": "null",
"TargetUri": "/redfish/v1/UpdateService"
},

PAGE 52

"PercentComplete": 0,
"StartTime": "2023-03-16T02:18:38+00:00",
"TaskMonitor": "/redfish/v1/TaskService/Tasks/7/Monitor",
"TaskState": "Running",
"TaskStatus": "OK"
}

Task Resource Response: When the task is completed.
< HTTP/1.1 200 OK

{
"@odata.id": "/redfish/v1/TaskService/Tasks/7",
"@odata.type": "#Task.v1_4_3.Task",
"EndTime": "2023-03-16T02:27:31+00:00",
"Id": "7",
"Messages": [
{
"@odata.type": "#Message.v1_0_0.Message",
"Message": "The task with id 7 has started.",
"MessageArgs": [
"7"
],
"MessageId": "TaskEvent.1.0.1.TaskStarted",
"Resolution": "None.",
"Severity": "OK"
},{
"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": "The target device 'FW_SMC_0' will be updated
with image 'cec1736ApFw-12345678'.",
"MessageArgs": [
"FW_SMC_0",
"cec1736ApFw-12345678"
],
"MessageId": "Update.1.0.TargetDetermined",
"Resolution": "None.",
"Severity": "OK"
},
{
"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": "Image 'cec1736ApFw-12345678' is being transferred to
'FW_SMC_0'.",
"MessageArgs": [
"cec1736ApFw-12345678",
"FW_SMC_0"
],
"MessageId": "Update.1.0.TransferringToComponent",
"Resolution": "None.",

PAGE 53

"Severity": "OK"
},
{
"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": "Device 'FW_SMC_0' successfully updated with
image 'cec1736ApFw-12345678'.",
"MessageArgs": [
"FW_SMC_0",
"cec1736ApFw-12345678"
],
"MessageId": "Update.1.0.UpdateSuccessful",
"Resolution": "None.",
"Severity": "OK"
},
{
"@odata.type": "#MessageRegistry.v1_4_1.MessageRegistry",
"Message": "Awaiting for an action to proceed with activating
image 'cec1736ApFw-12345678' on 'FW_SMC_0'.",
"MessageArgs": [
"cec1736ApFw-12345678",
"FW_SMC_0"
],
"MessageId": "Update.1.0.AwaitToActivate",
"Resolution": "System reboot or AC power cycle",
"Severity": "OK"
},
{
"@odata.type": "#Message.v1_0_0.Message",
"Message": "The task with id 7 has Completed.",
"MessageArgs": [
"7"
],
"MessageId": "TaskEvent.1.0.1.TaskCompletedOK",
"Resolution": "None.",
"Severity": "OK"
}
],
"Name": "Task 7",
"PercentComplete": 100,
"StartTime": "2023-03-16T02:18:38+00:00",
"TaskState": "Completed",
"TaskStatus": "OK"

}
● Task Monitor URI Lifecycle

The Task monitor URI response contains a task ID that can be used to get firmware update status

PAGE 54

when the task is running or completed. In the current implementation, the task monitor URI will
disappear when the task is complete. Use the task resource to get the firmware update status
after the task monitor URI stops responding with status code 202 and returns code 404.

Note: The task monitor URI does not have complete task representation, we recommend that you use the
task resource URI to monitor the firmware update and not the task monitor URI.

Task Monitor response: When the task is running
< HTTP/1.1 202 Accepted
< Location: /redfish/v1/TaskService/Tasks/7/Monitor
< Retry-After: 30
< Content-Type: application/json
{
"@odata.id": "/redfish/v1/TaskService/Tasks/7",
"@odata.type": "#Task.v1_4_3.Task",
"Id": "7",
"TaskState": "Running",
"TaskStatus": "OK"
}

Task Monitor response: When the task is completed
< HTTP/1.1 404 Not Found
{
"error": {
"@Message.ExtendedInfo": [
{
"@odata.type": "#Message.v1_1_1.Message",
"Message": "The requested resource of type Monitor named '7' was
not found.",
"MessageArgs": [
"Monitor",
"7"
],
"MessageId": "Base.1.13.0.ResourceNotFound",
"MessageSeverity": "Critical",
"Resolution": "Provide a valid resource identifier and resubmit
the request."
}
],
"code": "Base.1.13.0.ResourceNotFound",
"message": "The requested resource of type Monitor named '7' was not
found."
}
}

4. Firmware update-related Redfish messages.
Table 33 contains key Redfish messages that the Redfish Task, which corresponds to a firmware

PAGE 55

update, can contain. These messages are based on standard Redfish Message Registries. The
Resolution property contains information about actions that a Redfish user might need to perform.
Table XX: Key Redfish Messages
Message
Registry

MessageId Description Resolution Expected Client
Reaction

Update Target Determined ndicates that a target resource
or device for a image has been
determined for update

NA Continue to
monitor the
update
progress.

Update TransferringTo
Component

ndicates that the service is
ransferring an image to a
component.

NA Continue to
monitor the
update
progress.

Update Update Successfu ndicates that a resource or
device was updated.

NA No further
actions needed.

Update AwaitTo Activate ndicates that the resource or
device is awaiting for an action
o proceed with activating an
mage.

Device specific
action - for
example, perform
DC cycle of the
baseboard.

Perform the
requested
action to
advance the
update
operation

Update Transfer Failed ndicates that the service failed
o transfer an image to a
component.

Look at other
messages to
determine
corrective actions

Look at other
messages to
determine
corrective
actions

Update Verification Failed ndicates that the component
failed to verify an image.

Look at other
messages to
determine
corrective actions

Look at other
messages to
determine
corrective
actions

Update ApplyFailed ndicates that the component
failed to apply an image

Look at other
messages to
determine
corrective actions

Look at other
messages to
determine
corrective
actions

https://redfish.dmtf.org/registries/Update.1.0.0.json
https://redfish.dmtf.org/registries/Update.1.0.0.json
https://redfish.dmtf.org/registries/Update.1.0.0.json
https://redfish.dmtf.org/registries/Update.1.0.0.json
https://redfish.dmtf.org/registries/Update.1.0.0.json
https://redfish.dmtf.org/registries/Update.1.0.0.json
https://redfish.dmtf.org/registries/Update.1.0.0.json

PAGE 56

Update Activate Failed ndicates that the component
failed to activate the image.

Look at other
messages to
determine
corrective actions

Look at other
messages to
determine
corrective
actions

5. After a firmware update and subsequent firmware activation, the Redfish client can look at the
SoftwareInventory resources and check the updated version and other information about the
software inventory. Example of querying the firmware version of DEVICE_1.

curl
http://${smc}/redfish/v1/UpdateService/FirmwareInventory/DEVICE_1
{
"@odata.id":
"/redfish/v1/UpdateService/FirmwareInventory/ DEVICE_1",
"@odata.type": "#SoftwareInventory.v1_1_0.SoftwareInventory",
"Description": "Other image",
"Id": "DEVICE_1",
"Name": "Software Inventory",
"RelatedItem": [
{
"@odata.id": "/redfish/v1/Chassis/DEVICE_1"
}
],
"RelatedItem@odata.count": 1,
"Status": {
"HealthRollup": "OK",
"State": "Enabled"
},
"Updateable": true,
"Version": "XX.YY.ZZ"
}

6. To get the version and all other information for all the firmware devices in one request, use the
$expand query parameter on the FirmwareInventory resource.

~ # curl
'http://192.168.31.1/redfish/v1/UpdateService/FirmwareInventory?$expand=*'
{
"@odata.id": "/redfish/v1/UpdateService/FirmwareInventory",
"@odata.type": "#SoftwareInventoryCollection.SoftwareInventoryCollection",
"Members": [
{
"@odata.id":
"/redfish/v1/UpdateService/FirmwareInventory/ DEVICE_1",
"@odata.type": "#SoftwareInventory.v1_4_0.SoftwareInventory",
"Description": " FW_DEV_0 image",

https://redfish.dmtf.org/registries/Update.1.0.0.json

PAGE 57

"Id": " FW_DEV_0",
"Name": "Software Inventory",
"RelatedItem": [
{
"@odata.id": "/redfish/v1/Chassis/ FW_DEV_0"
}
],
"RelatedItem@odata.count": 1,
"SoftwareId": "0x0010",
"Status": {
"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"
},
"Updateable": true,
"Version": "XXX-22.10-1-123",
"WriteProtected": false
},
……………………
{
"@odata.id":
"/redfish/v1/UpdateService/FirmwareInventory/ DEVICE_2",
"@odata.type": "#SoftwareInventory.v1_4_0.SoftwareInventory",
"Description": "Other image",
"Id": " DEVICE_2",
"Manufacturer": "VENDOR","Name": "Software Inventory",
"RelatedItem": [
{
"@odata.id": "/redfish/v1/Chassis/ DEVICE_2"
}
],
"RelatedItem@odata.count": 1,
"SoftwareId": "",
"Status": {
"Health": "OK",
"HealthRollup": "OK",
"State": "Enabled"
},
"Updateable": false,
"Version": ""
}
],
"Members@odata.count": N,
"Name": "Software Inventory Collection"
}

