HiWire Consortium Active Electrical Cable (AEC) Specification

Revision 1.0

Abstract: This specification defines: the specific mechanical, electrical and software details inside of the existing IEEE and MSA standards that are to be used for HiWire Consortium compliance Active Electrical Cables (AECs). This document provides a common specification for systems manufacturers, system integrators, and suppliers of modules.

Website : www.hiwire.org

Contributions to this Specification are made under the terms and conditions set forth in Open Web Foundation Modified Contributor License Agreement ("OWF CLA 1.0") ("Contribution License") by: HiWire Consortium, Inc.

Usage of this Specification is governed by the terms and conditions set forth in **Open Web** Foundation Modified Final Specification Agreement ("OWFa 1.0") ("Specification License").

You can review the applicable OWFa1.0 Specification License(s) referenced above by the contributors to this Specification on the OCP website at http://www.opencompute.org/participate/legal-documents/. For actual executed copies of either agreement, please contact OCP directly.

Notes:

1. The above license does not apply to the Appendix or Appendices. The information in the Appendix or Appendices is for reference only and non-normative in nature.

NOTWITHSTANDING THE FOREGOING LICENSES. THIS SPECIFICATION IS PROVIDED BY OCP "AS IS" AND OCP EXPRESSLY DISCLAIMS ANY WARRANTIES (EXPRESS, IMPLIED, OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO THE SPECIFICATION. NOTICE IS HEREBY GIVEN, THAT OTHER RIGHTS NOT GRANTED AS SET FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD PARTIES. WHO DID NOT EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE IMPLEMENTATION OF OR COMPLIANCE WITH THIS SPECIFICATION. OCP IS NOT RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE REQUIRED IN ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK AS TO IMPLEMENTING OR OTHERWISE USING THE SPECIFICATION IS ASSUMED BY YOU. IN NO EVENT WILL OCP BE LIABLE TO YOU FOR ANY MONETARY DAMAGES WITH RESPECT TO ANY CLAIMS RELATED TO, OR ARISING OUT OF YOUR USE OF THIS SPECIFICATION. INCLUDING BUT NOT LIMITED TO ANY LIABILITY FOR LOST PROFITS OR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The following were Promoter member companies of the HiWire Consortium.

The following were contributing participant companies of the HiWire Consortium

10Gtek	Accton	Alpha Networks
Amphenol	Arrcus	BizLink
Broadex	Cameo	Canaan
Celestica	Centec	Chelsio Communications
Dell EMC	Delta	DriveNets
Edom Technology Co	FoxLink	Innovium
Inventec	Juniper	Keysight
Kingsignal	Microsoft	Multilane
QCT	Senao	Spirent
Steligent	T&S Communications	Tencent
ufiSpace	UL	Volex
Wistron	Xena Networks	

Change History:

Revision	Date	Changes
0.1	July 27, 2020	First Draft
0.2	April 21, 2021	2 nd Draft with minor updates and cleanup throughout
0.3	N/A	

0.4	Sept 14, 2021	Incorporate all comments from comment period (July-Aug, 2021), release candidate for v1.0	
1.0	Nov 15, 2021	Ratified version from HiWire BoD	
1.0_OCP	Mar 27, 2022	Adjust license for OCP submission, HiWire Consortium and OCP Logos to cover page, added Appendix A and B, add foreward with Compliance with OCP tenants	

Foreword

The development work on this specification was done by the HiWire Consortium, an industry group. The membership of this group since its formation in Oct, 2019 has included a mix of companies which are leaders across the industry.

Compliance with OCP Tenants

Openness

By migrating the HiWire Consortium Specification v1.0 to the Open Compute foundation it becomes open to all to review and implement. In addition the broad membership of the OCP is able to contribute to the future development of the specification.

Efficiency

The purpose of the HiWire Specification to drive commonality in implementations of Active Electrical Cables (AECs) in order to reduce friction in adoption users. This directly reduces opex in the form of qualifications and software work to adapt to different AEC implementations.

Impact

AECs have proven an essential component of hyperscale and service provider networks in order to enable high speed, low cost, low power and highly reliable networks. Multiple companies have announced AEC products to the market; migrating this specification to OCP drives commonality in these implementations and a broader membership base to widen impact.

Scale

As speeds increase, beyond 28Gb/lane NRZ, the ability to use passive copper cables is challenged by copper loss, thickness and vendor interoperability. The 650 group estimates that 75% of NIC-TOR connections will be made with Active Electrical cables (AECs) by 2026; already multiple hyperscalers have deployed, or are planning to deploy AECs in both NIC to TOR and Distributed, Disaggregated Chassis (DDC) applications.

Contents

Introduction	6
HiWire AEC Cable Architecture	7
400G QSFP-DD to QSFP-DD	9
Description	9
Host side Electrical Performance	9
Performance Parameters	10
Mechanical Parameters	10
Management Interface	10
400G OSFP to OSFP	11
Description	11
Host side Electrical Performance	11
Performance Parameters	12
Mechanical Parameters	12
Management Interface	12
200G QSFP56 to QSFP56	13
Description	13
Host side Electrical Performance	13
Performance Parameters	14
Mechanical Parameters	14
Management Interface	14
400G QSFP-DD to 4 x QSFP28	15
Description	15
QSFP-DD Host side Electrical Performance	15
QSFP28 Host Side Electrical Performance	16
Performance Parameters	16
Mechanical Parameters	17
Management Interface	17
400G OSFP to 4 x QSFP28	18
Description	18
QSFP28 Host Side Electrical Performance	19
Performance Parameters	19
Mechanical Parameters	20

Management Interface	20
200G QSFP56 to 2 x QSFP28	21
Description	21
QSFP56 Host side Electrical Performance	21
QSFP28 Host Side Electrical Performance	22
Performance Parameters	22
Mechanical Parameters	23
Management Interface	23
200G QSFP56 to 2 x QSFP56	24
Description	24
QSFP56 Host side Electrical Performance	24
Performance Parameters	25
Mechanical Parameters	25
Management Interface	25
100G DSFP/SFP56-DD to QSFP28	26
Description	26
DSFP / SFP56-DD Host side Electrical Performance	26
QSFP28 Host Side Electrical Performance	27
Performance Parameters	27
Mechanical Parameters	28
Management Interface	28
Appendix A - Checklist for IC approval of this Specification	29
Appendix B-Credo - OCP Supplier Information and Hardware Product Recognition Checklist	

Introduction

Standards in the Ethernet market are developed and shared by multiple organizations including the IEEE 802.3 committees and the many multi-source agreements (MSAs) established between vendors to specific connectors and software standards. These standards define the underlying electrical and mechanical specifications, but contain many options that enable significantly different implementations of the same functions. While this may be beneficial at an early stage of an industry, it burdens the user of the cable with adapting to, testing and qualifying many different implementations of the same functionality. This creates unnecessary friction in the Ethernet Cable market.

Active Electrical Cables (AECs) are a specific implementation of high speed Ethernet cables embedded clock and data recovery (CDR) and gearboxing functionality in the AEC to provide a more robust and flexible solution than traditional direct attach copper (DAC) or optical solutions. These AECs provide a deterministic AUI to AUI interface to the hosts and manage all of the details of the line equalization using embedded CDR technology.

The purpose of the HiWire Consortium is to define specific implementations of each AEC type based on real end user input in order to enable the following capabilities:

- 1. Standardize the implementation of features within the existing IEEE 802.3 and MSA definitions to minimize the amount of adaptation the cable user needs to do in order to qualify different implementations of the same AEC.
- Push end user qualification requirements upstream by defining a test specification and certified 3rd party test lab, so that users know that a HiWire qualified AEC meets their quality requirements.
- 3. Implement a monitoring process to ensure that HiWire AECs are manufactured and tested to a consistent level of quality that meets tier 1 end user requirements.

HiWire AEC Cable Architecture

A HiWire AEC cable can be thought of as five blocks combined to implement a complete end to end system as shown in Fig. 1. This example applies to the 50G generation of serdes referenced in this doc.

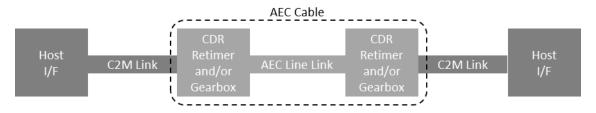
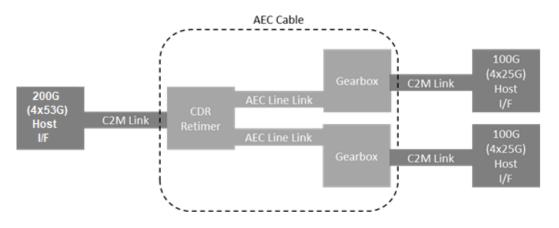
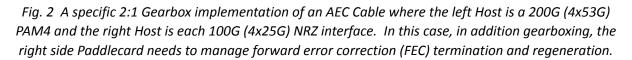




Fig. 1 An AEC System is composed of 5 blocks: A Host on each side (Switch, NIC or other device), a chip-to-module link (max 10dB) between the Host and the AEC Paddlecard. A CDR or gearbox function in each paddle card connected via a deterministic, pre-configured Line side (unrestricted, but potentially >30dB) between the paddle cards.

The HiWire AEC is retimed on both ends and the line link calibration is completed during production test, thus the HiWire AEC is a fully deterministic device similar to an Active Optical Cable (AOC).

HiWire AEC Cables can also implement gearboxing functions in one or both of the paddle cards to translate between different speed interfaces, initially these will enable translation between 56G PAM4 and 25G NRZ. These options are not currently available in other cable types and require L2 functionality to properly terminate and regenerate the needed forward error correction (FEC) for each link type

In both cases the line side interface is fully self contained inside the cable system, thus the performance of the line side interface is covered by the specification but not the details of its implementation – it is most likely implemented in twin-axial copper, but this is not specified.

The HiWire AEC Specification covers the following items in explicit detail:

- C2M Interface Specifics per Cable type
 - Per cable type which 802.3 interface(s) must be supported
 - Fixed vs. adjustable Tx/Rx parameter support
 - Forward-error correction (FEC) support
- System Level Performance Parameters
 - Maximum link time from power-on and/or reset
 - Maximum Link Latency
 - Maximum power consumption
 - Temperature and Voltage Range
 - Performance Metrics pre-FEC and post-FEC BER requirements
- Mechanical Parameters
 - Cable shell dimensions which version and sub-type from MSA
 - Cable diameter, bend radius and bend space
- Management Specification
 - CMIS, SFF-8636 or similar with explicit fields per cable type
- Quality and Qualification Requirements
 - Environmental Standards (RoHS, REACH, etc.)

400G QSFP-DD to QSFP-DD

Description

This cable is a point to point 400G (8x56G lane, full duplex) QSFP-DD to QSFP-DD without FEC termination or gearboxing functionality.

Host side Electrical Performance

Refer to IEEE C2M specification

Note: *Please refer to IEEE802.3bs 120E for TP4 definition. Output values are fixed in cable, autonegotiation and link training are not supported.

Parameter	Value	Units
Signaling rate per lane (range)	26.5625 ± 100 ppm	GBd
AC common-mode output voltage (max, RMS)	17.5	mV
Differential peak-to-peak output voltage (max)	900	mV
Near-end ESMW (Eye symmetry mask width)	0.265	UI
Near-end Eye height, differential (min)	70	mV
Far-end ESMW (Eye symmetry mask width)	0.2	UI
Far-end Eye height, differential (min)	30	mV
Transition time (min, 20% to 80%)	9.5	ps
DC common mode voltage (min) ^a	-350	mV
DC common mode voltage (max) ^a	2850	mV

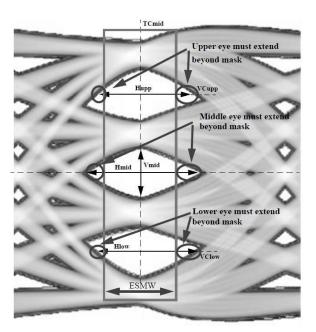


Figure 6-1 PAM4 Upper, Middle, and Lower Eye Mask

Performance Parameters

All QSFP-DD MSA Specifications must be met. In addition, the following items must be met which narrow the QSFP-DD MSA.

Parameter	Max Value	Comments
Nominal Data Rate per Lane	53.125Gbps (PAM4)	
BER (Pre-FEC)	<2×10 ⁻⁸	Worst case lane, tested with PRBS31Q pattern Room temp
BER (Post-FEC)	<10 ⁻¹⁵	Tested with QPRBS31 pattern Tested at min and max operating temp
Power Consumption per End	5W	
Latency	30ns + 4.5ns/m of cable flight time	
Operating Case Temp	0'C – 70'C	
Time to CMIS Ready	2 seconds	Power on or reset to CMIS I2C ready to respond to commands
Time to link	30 seconds	Power on or reset to link established end to end

Mechanical Parameters

Parameter	Value	Comments
Module Form Factor	QSFP-DD Type 2, MSA v3.0	
Cable Configuration / OD	<=3m – single conductor, <=7mm OD >3m – <=7m – dual conductor, <= 6.5mm >7m – single/dual conductor, <= 11mm	Nominal OD OI
Cable Bend Space	<=7m Max 63.5mm	Measured from end of connector to 90 degree bend in cable
Cable Bend Radius	100 cycles – 5x OD 10 cycles – 3x OD	Must continue to meet specifications post bend stress test
Length Tolerance	Nominal +/- 60mm	Connector Edge to edge length variation from stated nominal length

Management Interface

• The device should be compliant to CMIS v4.0 protocol, see relevant MSA file for precise register set. The device must support all modes defined in this register set.

400G OSFP to OSFP

Description

This cable is a point to point 400G (8x56G lane, full duplex) OSFP to OSFP without FEC termination or gearboxing functionality.

Host side Electrical Performance

Refer to IEEE C2M specification

Note: *Please refer to IEEE802.3bs 120E for TP4 definition. Output values are fixed in cable, autonegotiation and link training are not supported.

Parameter	Value	Units
Signaling rate per lane (range)	26.5625 ± 100 ppm	GBd
AC common-mode output voltage (max, RMS)	17.5	mV
Differential peak-to-peak output voltage (max)	900	mV
Near-end ESMW (Eye symmetry mask width)	0.265	UI
Near-end Eye height, differential (min)	70	mV
Far-end ESMW (Eye symmetry mask width)	0.2	UI
Far-end Eye height, differential (min)	30	mV
Transition time (min, 20% to 80%)	9.5	ps
DC common mode voltage (min) ^a	-350	mV
DC common mode voltage (max) ^a	2850	mV

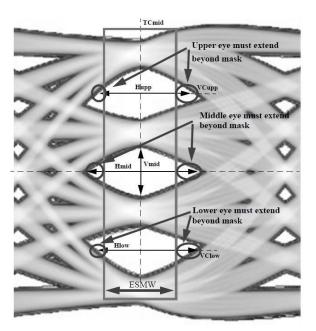


Figure 6-1 PAM4 Upper, Middle, and Lower Eye Mask

Performance Parameters

All OSFP Specifications must be met. In addition, the following items must be met which narrow the OSFP MSA.

Parameter	Max Value	Comments
Nominal Data Rate per Lane	53.125Gbps (PAM4)	
BER (Pre-FEC)	<2×10 ⁻⁸	Worst case lane, tested with PRBS31Q pattern Room temp
BER (Post-FEC)	<10 ⁻¹⁵	Tested with PRBS31Q pattern Tested at min and max operating temp
Power Consumption per End	5W	
Latency	30ns + 4.5ns/m of cable flight time	
Operating Case Temp	0'C – 70'C	
Time to CMIS Ready	2 seconds	Power on or reset to CMIS I2C ready to respond to commands
Time to link	30 seconds	Power on or reset to link established end to end

Mechanical Parameters

Parameter	Value	Comments
Module Form Factor	OSFP MSA v2.0	
Cable Configuration / OD	<=3m – single conductor, <=7mm OD >3m – <=7m – dual conductor, <= 6.5mm >7m – single/dual conductor, <= 11mm	Nominal OD n O[
Cable Bend Space	<=7m max 63.5mm	Measured from end of connector to 90 degree bend in cable
Cable Bend Radius	100 cycles - 5x OD 10 cycles - 3x OD	Must continue to meet specifications post bend stress test
Length Tolerance	Nominal +/- 60mm	Connector Edge to edge length variation from stated nominal length

Management Interface

• The device should be compliant to CMIS v4.0 protocol, see relevant MSA file for precise register set. The device must support all modes defined in this register set.

200G QSFP56 to QSFP56

Description

This cable is a point to point 200G (4x56G lane, full duplex) QSFP56 to QSFP56 without FEC termination or gearboxing functionality.

Host side Electrical Performance

Refer to IEEE C2M specification

Note: *Please refer to IEEE802.3bs 120E for TP4 definition. Output values are fixed in cable, autonegotiation and link training are not supported.

Parameter	Value	Units
Signaling rate per lane (range)	26.5625 ± 100 ppm	GBd
AC common-mode output voltage (max, RMS)	17.5	mV
Differential peak-to-peak output voltage (max)	900	mV
Near-end ESMW (Eye symmetry mask width)	0.265	UI
Near-end Eye height, differential (min)	70	mV
Far-end ESMW (Eye symmetry mask width)	0.2	UI
Far-end Eye height, differential (min)	30	mV
Transition time (min, 20% to 80%)	9.5	ps
DC common mode voltage (min) ^a	-350	mV
DC common mode voltage (max) ^a	2850	mV

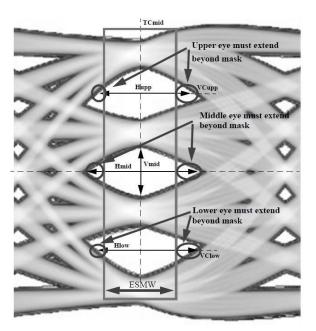


Figure 6-1 PAM4 Upper, Middle, and Lower Eye Mask

Performance Parameters

All SFF-8436 Specifications must be met. In addition, the following items must be met which narrow the SFF-8436 specification.

Parameter	Max Value	Comments
Nominal Data Rate per Lane	53.125Gbps (PAM4)	
BER (Pre-FEC)	<2x10 ⁻⁸	Worst case lane, tested with PRBS31Q pattern Room temp
BER (Post-FEC)	<10 ⁻¹⁵	Tested with PRBS31Q pattern Tested at min and max operating temp
Power Consumption per End	3W	
Latency	30ns + 4.5ns/m of cable flight time	
Operating Case Temp	0'C – 70'C	
Time to CMIS Ready	2 seconds	Power on or reset to CMIS I2C ready to respond to commands
Time to link	30 seconds	Power on or reset to link established end to end

Mechanical Parameters

Parameter	Value	Comments
Module Form Factor	QSFP56, SFF8436 v4.9 compliant	
Cable Configuration / OD	<=7m – single conductor, <=6.8mm OD >7m – single conductor, <= 9mm	Nominal OD
Cable Bend Space	<=7m, max 63.5mm	Measured from end of connector to 90 degree end in cable
Cable Bend Radius	100 cycles - 5x OD 10 cycles - 3x OD	Must continue to meet specifications post bend tress test
Length Tolerance	Nominal +/- 60mm	Connector Edge to edge length variation from tated nominal length

Management Interface

• The device should be compliant to CMIS 4.0 protocol, see appendix C for precise register set. The device must support all modes defined in this register set.

400G QSFP-DD to 4 x QSFP28

Description

This cable is a breakout cable connecting one 400G (8x56G lane, full duplex) QSFP-DD to 4 x QSFP28 including FEC termination or gearboxing functionality. The QSFP-DD side must operate with KP4 FEC; the QSFP28 must support software selectable KR4 FEC or CAUI-4.

QSFP-DD Host side Electrical Performance

Refer to IEEE C2M specification

Note: *Please refer to IEEE802.3bs 120E for TP4 definition. Output values are fixed in cable, autonegotiation and link training are not supported.

Parameter	Value	Units
Signaling rate per lane (range)	26.5625 ± 100 ppm	GBd
AC common-mode output voltage (max, RMS)	17.5	mV
Differential peak-to-peak output voltage (max)	900	mV
Near-end ESMW (Eye symmetry mask width)	0.265	UI
Near-end Eye height, differential (min)	70	mV
Far-end ESMW (Eye symmetry mask width)	0.2	UI
Far-end Eye height, differential (min)	30	mV
Transition time (min, 20% to 80%)	9.5	ps
DC common mode voltage (min) ^a	-350	mV
DC common mode voltage (max) ^a	2850	mV

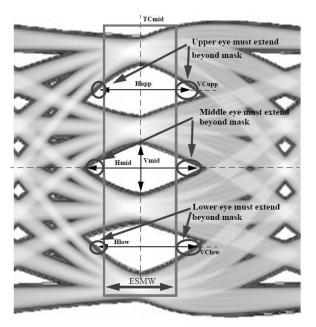


Figure 6-1 PAM4 Upper, Middle, and Lower Eye Mask

QSFP28 Host Side Electrical Performance

Parameter	Value	Units
Signaling rate per lane (range)	25.78125 ± 100 ppm	GBd
AC common-mode output voltage (max, RMS)	17.5	mV
Differential output voltage (max)	900	mV
Eye width (min)	0.57	UI
Eye height, differential (min)	228	mV
Transition time (min, 20% to 80%)	12	ps
DC common mode voltage (min) ^a	-350	mV
DC common mode voltage (max) ^a	2850	mV

Performance Parameters

All QSFP-DD MSA and SFF-8436 Specifications must be met. In addition, the following items must be met which narrow the QSFP-DD MSA.

Parameter	Max Value	Comments
Nominal Data Rate per Lane	53.125Gbps (PAM4 – QSFP-DD End) 25.78125Gbps (NRZ – QSFP28 End)	
BER (Pre-FEC)	<2x10 ⁻⁸	Worst case lane, tested with PRBS31Q pattern Room temp
BER (Post-FEC)	<10 ⁻¹⁵	Tested with PRBS31Q pattern Tested at min and max operating temp
Power Consumption per End	5W QSFP-DD End	
	2.5W QSFP28 End	
Latency	200ns + 4.5ns/m of cable flight time	
Operating Case Temp	0'C – 70'C	
Time to CMIS Ready	2 seconds	Power on or reset to CMIS I2C ready to respond to commands
Time to link	30 seconds	Power on or reset to link established end to end

Mechanical Parameters

Parameter	Value	Comments
Module Form Factor	QSFP-DD Type 2, MSA v3.0 QSFP28, SFF-8436 v4.9	
Cable Configuration	4 Cables emanating from QSFP-DD end	
Cable Outside Diameter	<=7m – maximum diameter 6mm >7m – maximum diameter is 8mm	
Cable Bend Space	<=7m - max 63.5mm	Measured from end of connector to 90 degree bend in cable
Cable Bend Radius	100 cycles - 5x OD 10 cycles - 3x OD	Must continue to meet specifications post bend stress test
Length Tolerance	Nominal +/- 60mm	Connector Edge to edge length variation from stated nominal length

Management Interface

• The QSFP-DD end should be compliant to CMIS v4.0 protocol, the QSFP28 End must be compliant with SFF-8636 v2.10a, see relevant MSA file precise register set. The device must support all modes defined in the attached register set.

400G OSFP to 4 x QSFP28

Description

This cable is a breakout cable connecting one 400G (8x56G lane, full duplex) OSFP to 4 x QSFP28 including FEC termination or gearboxing functionality. The OSFP side must operate with KP4 FEC; the QSFP28 must support software selectable KR4 FEC or CAUI-4.

QSFP-DD Host side Electrical Performance

Refer to IEEE C2M specification

Note: *Please refer to IEEE802.3bs 120E for TP4 definition. Output values are fixed in cable, autonegotiation and link training are not supported.

Parameter	Value	Units
Signaling rate per lane (range)	26.5625 ± 100 ppm	GBd
AC common-mode output voltage (max, RMS)	17.5	mV
Differential peak-to-peak output voltage (max)	900	mV
Near-end ESMW (Eye symmetry mask width)	0.265	UI
Near-end Eye height, differential (min)	70	mV
Far-end ESMW (Eye symmetry mask width)	0.2	UI
Far-end Eye height, differential (min)	30	mV
Transition time (min, 20% to 80%)	9.5	ps
DC common mode voltage (min) ^a	-350	mV
DC common mode voltage (max) ^a	2850	mV

a DC common mode voltage is generated by the host. Specification includes effects of ground offset voltage.

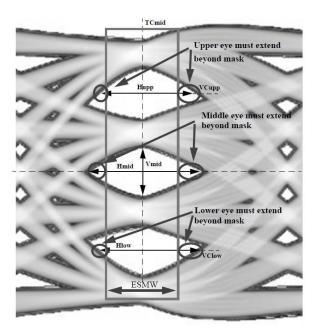


Figure 6-1 PAM4 Upper, Middle, and Lower Eye Mask

QSFP28 Host Side Electrical Performance Parameter

Value

Signaling rate per lane (range)	25.78125 ± 100 ppm	GBd
AC common-mode output voltage (max, RMS)	17.5	mV
Differential output voltage (max)	900	mV
Eye width (min)	0.57	UI
Eye height, differential (min)	228	mV
Transition time (min, 20% to 80%)	12	ps
DC common mode voltage (min) ^a	-350	mV
DC common mode voltage (max) ^a	2850	mV

Performance Parameters

All OSFP MSA and SFF-8436 Specifications must be met. In addition, the following items must be met which narrow the specifications

Parameter	Max Value	Comments
Nominal Data Rate per Lane	53.125Gbps (PAM4 – OSFP End) 25.78125Gbps (NRZ – QSFP28 End)	
BER (Pre-FEC)	<2x10 ⁻⁸	Worst case lane, tested with PRBS31Q pattern Room temp
BER (Post-FEC)	<10 ⁻¹⁵	Tested with PRBS31Q pattern Tested at min and max operating temp
Power Consumption per End	5W OSFP End	
	2.5W QSFP28 End	
Latency	200ns + 4.5ns/m of cable flight time	
Operating Case Temp	0'C – 70'C	
Time to CMIS Ready	2 seconds	Power on or reset to CMIS I2C ready to respond to commands
Time to link	30 seconds	Power on or reset to link established end to end

Mechanical Parameters

Parameter	Value	Comments
Module Form Factor	OSFP, MSA v2.0 QSFP28, SFF-8436 v4.9	
Cable Configuration	4 Cables emanating from OSFP side	
Cable Outside Diameter	<=7m – maximum diameter 6mm >7m – maximum diameter is 8mm	
Cable Bend Space	<=7m, max 63.5mm	Measured from end of connector to 90 degree bend in cable
Cable Bend Radius	100 cycles - 5x OD 10 cycles - 3x OD	Must continue to meet specifications post bend stress test
Length Tolerance	Nominal +/- 60mm	Connector Edge to edge length variation from stated nominal length

Management Interface

• The OSFP end should be compliant to CMIS v4.0 protocol, the QSFP28 End must be compliant with SFF-8636 v2.10a, see relevant MSA file precise register set. The device must support all modes defined in this register set.

200G QSFP56 to 2 x QSFP28

Description

This cable is a breakout cable connecting one 200G (4x56G lane, full duplex) QSFP to 2 x 100G (4x28G lane, full duplex) QSFP28 including FEC termination or gearboxing functionality. The QSFP56 side must operate with KP4 FEC the QSFP28 must support software selectable KR4 FEC or CAUI-4.

QSFP56 Host side Electrical Performance

Refer to IEEE C2M specification

Note: *Please refer to IEEE802.3bs 120E for TP4 definition. Output values are fixed in cable, autonegotiation and link training are not supported.

Parameter	Value	Units
Signaling rate per lane (range)	26.5625 ± 100 ppm	GBd
AC common-mode output voltage (max, RMS)	17.5	mV
Differential peak-to-peak output voltage (max)	900	mV
Near-end ESMW (Eye symmetry mask width)	0.265	UI
Near-end Eye height, differential (min)	70	mV
Far-end ESMW (Eye symmetry mask width)	0.2	UI
Far-end Eye height, differential (min)	30	mV
Transition time (min, 20% to 80%)	9.5	ps
DC common mode voltage (min) ^a	-350	mV
DC common mode voltage (max) ^a	2850	mV

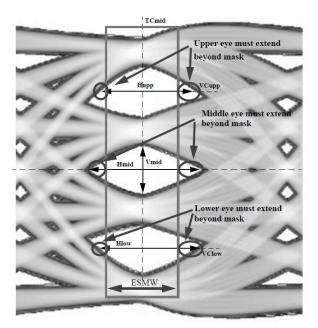


Figure 6-1 PAM4 Upper, Middle, and Lower Eye Mask

QSFP28 Host Side Electrical Performance

Parameter	Value	Units
Signaling rate per lane (range)	25.78125 ± 100 ppm	GBd
AC common-mode output voltage (max, RMS)	17.5	mV
Differential output voltage (max)	900	mV
Eye width (min)	0.57	UI
Eye height, differential (min)	228	mV
Transition time (min, 20% to 80%)	12	ps
DC common mode voltage (min) ^a	-350	mV
DC common mode voltage (max) ^a	2850	mV

Performance Parameters

All SFF-8436 Specifications must be met. In addition, the following items must be met which narrow the specifications

Parameter	Max Value	Comments
Nominal Data Rate per Lane	53.125Gbps (PAM4 – QSFP56 End) 25.78125Gbps (NRZ – QSFP28 End)	
BER (Pre-FEC)	<2x10 ⁻⁸	Worst case lane, tested with PRBS31Q pattern, Room temp
BER (Post-FEC)	<10 ⁻¹⁵	Tested with PRBS31Q pattern Tested at min and max operating temp
Power Consumption per End	3W QSFP56 End	
	2.5W QSFP28 End	
Latency	200ns + 4.5ns/m of cable flight time	
Operating Case Temp	0'C – 70'C	
Time to CMIS Ready	2 seconds	Power on or reset to CMIS I2C ready to respond to commands
Time to link	30 seconds	Power on or reset to link established end to end

Mechanical Parameters

Parameter	Value	Comments
Module Form Factor	QSFP, SFF-8436 ∨4.9	
Cable Configuration	2 Cables emanating from QSFP56 side	
Cable Outside Diameter	<=7m – maximum diameter 6mm >7m – maximum diameter is 8mm	
Cable Bend Space	<=7m - Max 63.5mm	Measured from end of connector to 90 degree bend in cable
Cable Bend Radius	100 cycles - 5x OD 10 cycles - 3x OD	Must continue to meet specifications post bend stress test
Length Tolerance	Nominal +/- 60mm	Connector Edge to edge length variation from stated nominal length

Management Interface

• The Q56 end must be compliant with CMIS 4.0, the Q28 must be compliant with SFF-8636 v2.10a, see relevant MSA file precise register set. The device must support all modes defined in this register set.

200G QSFP56 to 2 x QSFP56

Description

This cable is a breakout cable connecting one 200G (4x56G lane, full duplex) QSFP to 2 x 100G (2x56G lane, full duplex) QSFP56 without FEC termination or gearboxing functionality.

QSFP56 Host side Electrical Performance

Refer to IEEE C2M specification

Note: *Please refer to IEEE802.3bs 120E for TP4 definition. Output values are fixed in cable, autonegotiation and link training are not supported.

Parameter	Value	Units
Signaling rate per lane (range)	26.5625 ± 100 ppm	GBd
AC common-mode output voltage (max, RMS)	17.5	mV
Differential peak-to-peak output voltage (max)	900	mV
Near-end ESMW (Eye symmetry mask width)	0.265	UI
Near-end Eye height, differential (min)	70	mV
Far-end ESMW (Eye symmetry mask width)	0.2	UI
Far-end Eye height, differential (min)	30	mV
Transition time (min, 20% to 80%)	9.5	ps
DC common mode voltage (min) ^a	-350	mV
DC common mode voltage (max) ^a	2850	mV

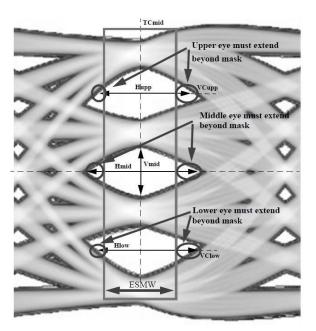


Figure 6-1 PAM4 Upper, Middle, and Lower Eye Mask

Performance Parameters

All SFF-8436 Specifications must be met. In addition, the following items must be met which narrow the specifications

Parameter	Max Value	Comments
Nominal Data Rate per Lane	53.125Gbps (PAM4)	
BER (Pre-FEC)	<2×10 ⁻⁸	Worst case lane, tested with PRBS31Q pattern, Room temp
BER (Post-FEC)	<10 ⁻¹⁵	Tested with PRBS31Q pattern Tested at min and max operating temp
Power Consumption per End	3W QSFP56 End	
Latency	30ns + 4.5ns/m of cable flight time	
Operating Case Temp	0'C – 70'C	
Time to CMIS Ready	2 seconds	Power on or reset to CMIS I2C ready to respond to commands
Time to link	30 seconds	Power on or reset to link established end to end

Mechanical Parameters

Parameter	Value	Comments
Module Form Factor	QSFP, SFF-8436 ∨4.9	
Cable Configuration	2 Cables emanating from QSFP56 side	
Cable Outside Diameter	<=7m – maximum diameter 6mm >7m – maximum diameter is 8mm	
Cable Bend Space	<=7m - Max 63.5mm	Measured from end of connector to 90 degree bend in cable
Cable Bend Radius	100 cycles - 5x OD 10 cycles - 3x OD	Must continue to meet specifications post bend stress test
Length Tolerance	Nominal +/- 60mm	Connector Edge to edge length variation from stated nominal length

Management Interface

• The Q56 end must be compliant with CMIS 4.0, the Q28 must be compliant with SFF-8636 v2.10a, see relevant MSA file precise register set. The device must support all modes defined in this register set.

100G DSFP/SFP56-DD to QSFP28

Description

This cable is a gearboxed cable connecting one 100G (2x56G lane, full duplex) DSFP or SFP56-DD to one 100G (4x28G lane, full duplex) QSFP28 including FEC termination or gearboxing functionality. The DSFP/SFP56-DD side must operate with KP4 FEC; the QSFP28 side must support both KR4 FEC and CAUI-4 via a software switch in the QSFP28 side.

DSFP / SFP56-DD Host side Electrical Performance

Refer to IEEE C2M specification

Note: *Please refer to IEEE802.3bs 120E for TP4 definition. Output values are fixed in cable, autonegotiation and link training are not supported.

Parameter	Value	Units
Signaling rate per lane (range)	26.5625 ± 100 ppm	GBd
AC common-mode output voltage (max, RMS)	17.5	mV
Differential peak-to-peak output voltage (max)	900	mV
Near-end ESMW (Eye symmetry mask width)	0.265	UI
Near-end Eye height, differential (min)	70	mV
Far-end ESMW (Eye symmetry mask width)	0.2	UI
Far-end Eye height, differential (min)	30	mV
Transition time (min, 20% to 80%)	9.5	ps
DC common mode voltage (min) ^a	-350	mV
DC common mode voltage (max) ^a	2850	mV

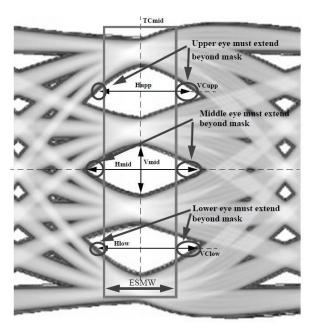


Figure 6-1 PAM4 Upper, Middle, and Lower Eye Mask

QSFP28 Host Side Electrical Performance

Parameter	Value	Units
Signaling rate per lane (range)	25.78125 ± 100 ppm	GBd
AC common-mode output voltage (max, RMS)	17.5	mV
Differential output voltage (max)	900	mV
Eye width (min)	0.57	UI
Eye height, differential (min)	228	mV
Transition time (min, 20% to 80%)	12	ps
DC common mode voltage (min) ^a	-350	mV
DC common mode voltage (max) ^a	2850	mV

Performance Parameters

All DSFP or SFP-56DD and SFF-8436 Specifications must be met. In addition, the following items must be met which narrow the specifications

Parameter	Max Value	Comments
Nominal Data Rate per Lane	53.125Gbps (PAM4 – DSFP/SFP56-DD End) 25.78125Gbps (NRZ – QSFP28 End)	
BER (Pre-FEC)	<2x10 ⁻⁸	Worst case lane, tested with PRBS31Q pattern, Room temp
BER (Post-FEC)	<10 ⁻¹⁵	Tested with PRBS31Q pattern Tested at min and max operating temp
Power Consumption per End	2.5W	
Latency	200ns + 4.5ns/m of cable flight time	
Operating Case Temp	0'C – 70'C	
Time to CMIS Ready	2 seconds	Power on or reset to CMIS I2C ready to respond to commands
Time to link	30 seconds	Power on or reset to link established end to end

Mechanical	Parameters
wiechanica	Falameters

Parameter	Value	Comments
Module Form Factor	DSFP v1.0, SFP-DD v1.0, SFF-8436 v4.9	
Cable Configuration	Single Cable connecting ends	
Cable Outside Diameter	<=7m – maximum diameter 6mm >7m – maximum diameter is 8mm	
Cable Bend Space	Max 63.5mm	Measured from end of connector to 90 degree bend in cable
Cable Bend Radius	100 cycles - 5x OD 10 cycles - 3x OD	Must continue to meet specifications post bend stress test
Length Tolerance	Nominal +/- 60mm	Connector Edge to edge length variation from stated nominal length

Management Interface

- SFP56-DD End must be compliant with SFP-DD Management Interface v1.0
- DSFP End must be compliant with DSFP Management Interface v1.0
- QSFP28 end must be compliant with SFF-8636
- See relevant MSA file precise register set. The device must support all modes defined in this register set.

Appendix A - Checklist for IC approval of this Specification

Complete all the checklist items in the table with links to the section where it is described in this spec or an external document .

Item	Status or Details	Link to detailed explanation
Is this contribution entered into the OCP Contribution Portal?	Yes or No	If no, please state reason.
Was it approved in the OCP Contribution Portal?	Yes or No	If no, please state reason.
Is there a Supplier(s) that is building a product based on this Spec? (Supplier must be an OCP Solution Provider)	Yes or No	List Supplier Name(s)
Will Supplier(s) have the product available for GENERAL AVAILABILITY within 120 days?	Yes or No	If more time is required, please state the timeline and reason for extension request.
		Please have each Supplier fill out Appendix B.

Appendix B-Credo - OCP Supplier Information and Hardware Product Recognition Checklist

(to be provided by each supplier seeking OCP recognition for a Hardware Product based on this specification)

Company: Credo Contact Info: 110 Rio Robles, San Jose, CA 95134 <u>hiwire@credosemi.com</u>

Product Name: HiWire LP SPAN AECs Product SKU#: CAC43X301D1D-D0-HW, CAC45X301D1D-D0-HW, CAC47X281D1D-D0-HW Link to Product Landing Page: <u>https://credosemi.com/products/hiwire-aec/span-lp-span/</u>

Product Name: HiWire LP CLOS AECs Product SKU#: CAC405321D1D-D0-HW, CAC41X321D1D-D0-HW, CAC415321D1D-D0-HW, CAC42X321D1D-D0-HW, CAC425321D1D-D0-HW Link to Product Landing Page: <u>https://credosemi.com/products/hiwire-aec/lp-clos/</u>

Product Name: HiWire SHIFT AECs Product SKU#: CAC43X301D4P-A0-HW, CAC43X301D4P-A0-HW Link to Product Landing Page: <u>https://credosemi.com/products/hiwire-aec/shift-lp-shift/</u> The following is needed for OCP hardware product recognition:

For OCP Inspired[™]

- All Suppliers must be a Silver, Gold or Platinum Member.
- Declare product is 100% compliant with specification
- Complete the <u>OCP Inspired™ Product Recognition Checklist</u>, which includes hardware management conformance checks and security profile.

For OCP Accepted™

- All Suppliers must be an OCP Member. All corporate membership levels are eligible.
- Complete the <u>OCP Accepted™ Product Recognition Checklist</u>, which includes hardware management conformance checks, security profile and open system firmware conformance checks.
- Submit a design package meeting <u>OCP Hardware Design Guideline Contribution</u> <u>Checklist</u> (if not already submitted by the contributor). If already submitted, declare the product is 100% compliant with the design package.
- Submit a firmware package including a firmware image, build scripts, documentation, test results and a tool that verifies modifications
- Submit the BMC source code, if applicable to product type

Please complete the OCP Inspired[™] Product Recognition Submission Checklist or OCP Accepted[™] Product Recognition Checklist and the following table.

ltem	Details	Links
Which product recognition?	OCP Accepted™ or OCP Inspired™	Provide link for the appropriate Product Checklist
If OCP Accepted™, who provided the Design Package?		Link to OCP Contribution Database
Where can a potential adopter purchase the product?		Link to OCP Marketplace