Grand Canyon Storage System Specification

Revision 1.0
9/14/2022

Authors:
Abe Garcia, Hardware Engineer, Meta
Chenyu Xu / Dmitriy Shapiro, Mechanical Engineer, Meta
Dan Zhang, Software Engineer, OpenBMC, Meta
Jeff Puglis, Hardware Engineer, Meta
Madhavan Ravi, Hardware Engineer, Meta
Rajesh Kasukurthy, Thermal Engineer, Meta
Table of Contents

1. LICENSE 9
 1.1. OCP CLA 9

2. OCP TENETS COMPLIANCE 10
 2.1 Openness 10
 2.2. Efficiency 10
 2.3. Impact 10
 2.4. Scale 11

3. REVISION TABLE 12

4. SCOPE 13

5. OVERVIEW 13
 5.1 System Architecture 13
 5.1.1 System Design and Flexibility 13
 5.1.2 System Improvements from Bryce Canyon 15
 5.2 System Components 16
 5.2.1 Barton Springs (Codename for the Integrated 1S Server Card) 16
 5.2.2 Storage Controller Card 17
 5.2.4 IOC Module 19
 5.2.5 E1.S SSD 21
 5.2.6 OCP3.0 NIC 22
 5.2.7 Drive Plan Board (DPB) 22
 5.2.8 Power Transfer Board (PTB) 25
 5.2.9 Power Cable-Track and Power Delivery Board 25
 5.3 System Configurations 26
 5.3.1 Dual Storage Server 28
 5.3.2 Single Storage Server 28
 5.3.3 JBOD 29
 5.4 Systems Management Overview 30

6. RACK COMPATIBILITY 33

7. RACK IMPLEMENTATION 33
 7.1 Type 5 176
 7.2 Type 7 34
 7.3 Compatibility with Open Rack Standard 35
8. SYSTEM INTERACTION AND SERVICEABILITY

8.1 Labeling of Logical Domains
8.2 LEDs and Buttons
 8.2.1 Front Panel Buttons and LEDs
 8.2.1.1 Power Button
 8.2.1.2 Power LED
 8.2.1.3 Reset Button
 8.2.1.5 USB Debug Port
 8.2.1.6 SSD LEDs
 8.2.1.7 NIC LEDs
 8.2.1.8 IOC Module LEDs
 8.2.3 HDD LED behaviors
 8.2.4 Fan Module LEDs
8.3 Hard Drive Serial Number Window
8.4 Service Operations
 8.4.1 HDD Replacement
 8.4.2 SSD Replacement
 8.4.3 SCC Replacement
 8.4.4 UIC Replacement
 8.4.5 UIC TPM & BSM Replacement
 8.4.6 NIC Replacement
 8.4.7 Barton Springs Replacement
 8.4.8 IOC Module Replacement
 8.4.9 Fan Module Replacement
 8.4.10 Fan Louver & Honeycomb Replacement
 8.4.11 Drive Plan Board Replacement
 8.4.12 Cable Track and Power Delivery Board Replacement

9. SYSTEM PERFORMANCE

9.1 Designing the system interfaces without bottlenecks
9.2 HDD performance degradation due to vibrations
 9.2.1 Normal Operating Environment (sustained operating conditions)
 9.2.2 Unsustained Operating Conditions
 9.2.3 Design Criteria to Enable Chassis Longevity

10. ELECTRICAL DESIGN

10.1 PCIe Topology
 10.1.1 PCIe Mapping
 10.1.2 PCIe Clocks and Resets
10.2 System Management
 10.2.1 Device Management signaling 64
 10.2.2 I2C Topology 65
 10.2.3 USB, SPI, JTAG 67
 10.2.4 Network Controller Sideband Interface (NC-SI) requirements 68
 10.2.5 UART 68
 10.2.6 GPIO (Insert) Topology 69
 10.2.8 Fan control 70
 10.2.9 System Configurations 72
 10.2.9.1 Integrated (Dual) Configuration 72
 10.2.9.2 Integrated (Single) Configuration 72
 10.2.9.3 JBOD Configuration 73
10.3 Signal Integrity requirements 73
 10.3.1 SAS/SATA 73
 10.3.2 PCIe 73
10.4 ESD Compliance 73
11. POWER 73
 11.1 Power Topology 73
 11.2 System Grounding Topology 74
 11.2.1 Mechanical Interface Isolation Distance 75
 11.2.2 Connector Housing Ground Topology 76
 11.3 12V Busbar Cable Input 76
 11.4 Drive Power Requirements 77
 11.4.1 Staggered spin up requirements 77
 11.4.2 Hot-Swap Requirements 77
 11.4.3 5V Conversion Failure Domains 77
 11.4.4 5V Conversion Loading Requirements 78
 11.5 Hot-Swap Requirements 78
 11.5.1 Capacitive Load 78
 11.6 IOCM Power Topology 78
 11.7 Storage Controller Card Power Topology 80
 11.8 User Interface Card Power Topology 81
 11.9 Power Budget 81
 11.9.1 System Power Budget 81
 11.9.2 SCC Connector Power Budget 82
 11.9.3 IOCM Connector Power Budget 82
 11.9.4 UIC Connector Power Budget 82
11.10 Power Sequencing
 11.10.1 SCC Power Sequencing
 11.10.2 Barton Springs Power Sequencing
 11.10.3 IOCM Power Sequencing
 11.10.4 UIC Power Sequencing

12 INDIVIDUAL PCBA SPECIFICATIONS
12.1 Drive Plane Boards (RDPB & FDPB)
 12.1.1 Connectors
 12.1.1.1 Compute Slots
 12.1.1.2 SCC Connectors
 12.1.1.3 E1.S/IOCM Connectors
 12.1.1.4 NIC Connectors
 12.1.1.5 UIC Connectors
 12.1.1.6 HDD Connectors
 12.1.1.7 12V System Power Input
 12.1.1.8 DPB to DPB Power Connectors
 12.1.1.9 DPB to DPB Signal Connectors
 12.1.1.10 Fan Connectors
 12.1.2 LEDs
 12.1.2.1 Drive Activity
 12.1.2.2 Drive Fault/Identification
 12.1.3 Thermal Sensor Placement
 12.1.4 I2C Component Placement
 12.1.5 Drawer Detection Sensor
 12.1.6 Drive Control Signals
 12.1.7 PCB Details
 12.1.7.1 Front DPB
 12.1.7.1.1 Important Components and Features
 12.1.7.1.2 PCB Key Dimensions
 12.1.7.2 Rear DPB
 12.1.7.2.1 Important Component and Features
 12.1.7.2.2 PCB Key Dimensions
 12.1.7.2.3 PCB Stackup
 12.2 Storage Controller Card (SCC)
 12.2.1 Storage Controller Card Configuration Diagram
 12.2.2 Storage Controller Card Configurations
 12.2.2.1 Connector Configurations
12.2.5 Storage Controller Card PCB
 12.2.5.1 Important Components and interfaces
 12.2.5.2 PCB Key Dimensions
 12.2.5.3 PCB Stack up

12.3 IOCM
 12.3.1 IOCM Configuration Diagram
 12.3.2 IOCM Connectors
 12.3.3 IOCM Card PCB
 12.3.3.1 Important Components and Interfaces
 12.3.3.2 PCB Key Dimensions
 12.3.3.3 PCB Stack up

12.4 User Interface Card (UIC)
 12.4.1 UIC Variants
 12.4.2 BMC
 12.4.3 CPLD
 12.4.4 Connectors
 12.4.5 USB Debug
 12.4.6 BSM and TPM 2.0
 12.4.7 User Interface Card PCB
 12.4.7.1 PCB Key Dimensions
 12.4.7.2 PCB Stack up

12.5 Power Delivery Board (PDB)
 12.5.1 Configuration Diagram
 12.5.2 Connectors
 12.5.3 PDB PCB
 12.5.3.1 Important Components and Interfaces
 12.5.3.2 PCB Key Dimensions
 12.5.3.3 PCB Stack up

12.6 Power Transfer Board (PTB)
 12.6.1 Configuration Diagram
 12.6.2 Connectors
 12.6.3 PTB PCB
 12.6.3.1 Important Components and Interfaces
 12.6.3.2 PCB Key Dimensions
 12.6.3.3 PCB Stack up

13. INTERNAL CABLES
 13.1 JBOD Connection Bracket
13.2 Single Server SAS Cable

14. EXTERNAL CABLES
 14.1 JBOD configuration
 14.2 Cable Details

15 BMC OVERVIEW
 15.1 Introduction
 15.2 Front Panel
 15.2.1 OCP Debug Card
 15.3 Power Control
 15.4 Remote Console
 15.5 IPMI FRUID
 15.6 Sensor Information
 15.7 Firmware Information/Update
 15.8 Log Information
 15.9 Fan Speed Control
 15.10 Enclosure Management
 15.10.1 HDDs Status
 15.10.2 Error Code
 15.11 Event List Along With The Error Code
 15.12 IPMI Command Support List
 15.13 Expander IPMB Command Support List

16. EXPANDER FIRMWARE OVERVIEW
 16.1 Drive LEDs
 16.1.1 Drive Link LED
 16.1.2 Drive Fault / Identification LED
 16.1.3 Drawer Open Thermal Warning Behavior
 16.2 Power Readings
 16.3 Runtime System Configurations
 16.4 Report Status of GPIOs
 16.5 Even Report and Log
 16.6 Security Features

17. THERMAL DESIGN SPECIFICATION/REQUIREMENTS
 17.1. Data Center Environmental Conditions
 17.1.1 Location of Data Center/Altitude
 17.1.2 Cold-Aisle Temperature
 17.1.3 Cold-Aisle Pressurization
17.1.4 Relative Humidity 155
17.2 System Thermal Operational Conditions 155
 17.2.1 Inlet Temperature 155
 17.2.2 Pressurization 155
 17.2.3 Fan Redundancy 156
 17.2.4 Service Mode 156
 17.2.5 Delta T 156
 17.2.6 System Airflow or Volumetric Flow 156
 17.2.7 Thermal Margin 156
 17.2.8 Thermal Sensor 156
17.3 Grand Canyon Thermal Design Requirements 176
 17.3.1 Fans 157
 17.3.2 Cooling Zones 157
 17.3.3 92mm Fan Module 157
 17.3.4 Air Baffles 159

18. MECHANICAL 162
 18.1. Overview 162
 18.2. Overall Dimensions 176
 18.3. Rotational Vibration Requirements 176
 18.4 Drive Plane Board 176
 18.5 Drawer Structural Walls 164
 18.6 Slide Rail 176
 18.7 Bus Bar Power Module & Cable Track 176
 18.8. Drawer Release Handles 176
 18.9. Rack Release Latching 176
 18.10 Chassis Lift Handles 168
 18.11 Drive Retention 169
 18.12 UIC and IOC Module 171
 18.13 Storage Controller Card 171

19. ENVIRONMENTAL AND REGULATIONS 172
 19.1 Regulatory Compliance 172
 19.2 Product Safety Compliance 172

20. ENVIRONMENTAL REQUIREMENTS 173
 20.1. Vibration & Shock 176
 20.2 Regulations 176
 20.3 Chassis Labels and Markings 176
20.4 Data Center Design Requirements 174
20.5 Mean Time Between Failure (MTBF) Requirements 175
 15.5.1 MTBF Prediction 175
 20.5.2 MTBF Demonstration Test 175
20.5 Certifications 175

21. PRESCRIBED MATERIALS 175
 21.1 Disallowed Components 176
 21.2 Capacitors & Inductors 176
 21.3 Component Derating 176
 21.4 Sustainable Materials 176

22. SYSTEM FIRMWARE 177

23. HARDWARE MANAGEMENT 177
 23.1 Redfish Compliance 177
 23.2 Source Availability 177

24. SECURITY 178

25. REFERENCES (OPTIONAL) 178

APPENDIX A - REQUIREMENTS FOR IC APPROVAL (to be completed Contributor of Baseline Spec) 178

1. LICENSE

1.1. OCP CLA

Contributions to this Specification are made under the terms and conditions set forth in Open Compute Project Contribution License Agreement (“OCP CLA”) (“Contribution License”) by: Meta, Inc.

You can review the signed copies of the applicable Contributor License(s) for this Specification on the OCP website at https://www.opencompute.org/legal-documents.

Usage of this Specification is governed by the terms and conditions set forth in Open Compute Project Hardware License – Permissive (“OCP HL Permissive”) also known as a “Specification License”.

9
NOTE: The following clarifications, which distinguish technology licensed in the Contribution License and/or Specification License from those technologies merely referenced (but not licensed), were accepted by the Incubation Committee of the OCP: None.

NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED BY OCP "AS IS" AND OCP EXPRESSLY DISCLAIMS ANY WARRANTIES (EXPRESS, IMPLIED, OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO THE SPECIFICATION. NOTICE IS HEREBY GIVEN, THAT OTHER RIGHTS NOT GRANTED AS SET FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD PARTIES WHO DID NOT EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE IMPLEMENTATION OF OR COMPLIANCE WITH THIS SPECIFICATION. OCP IS NOT RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE REQUIRED IN ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK AS TO IMPLEMENTING OR OTHERWISE USING THE SPECIFICATION IS ASSUMED BY YOU. IN NO EVENT WILL OCP BE LIABLE TO YOU FOR ANY MONETARY DAMAGES WITH RESPECT TO ANY CLAIMS RELATED TO, OR ARISING OUT OF YOUR USE OF THIS SPECIFICATION, INCLUDING BUT NOT LIMITED TO ANY LIABILITY FOR LOST PROFITS OR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2. OCP TENETS COMPLIANCE

2.1 Openness
Grand Canyon system is open to enable large scale deployments in hyperscale type of environments leveraging OpenBMC, OCP NIC, industry standard interfaces and a modular form factor design concept. It provides flexible and open interfaces for future expandability.

2.2. Efficiency
Grand Canyon offers efficiency gains across the thermal management system due to mechanical improvements, performance efficiency gains due to increases in performance/watt as well as performance/TB, improved vibration mitigation to allow interoperability with future HDD capacities.

2.3. Impact
The Grand Canyon platform demonstrates flexibility of configurations and modularity of design. It
improves performance/watt, performance/TB, provides improved vibration for reliability while being serviceable at scale. It should be noted that the HDD slot vibration mitigation techniques enable the system to be leveraged in the future for multiple HDD generations.

2.4. Scale

Grand Canyon enables serviceability gains as all major system components are serviceable to be maintained at scale. It is designed such that CPU Board (Barton Springs) can be easily upgraded to the next generation of CPUs.
3. REVISION TABLE

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Author</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/14/2022</td>
<td>1.0</td>
<td>Jeff Puglis</td>
<td>Ready for OCP release</td>
</tr>
</tbody>
</table>
4. SCOPE

This document defines the technical specifications for the Grand Canyon Storage System, hereinafter referred to as “Grand Canyon,” used in the Open Compute Project.

Grand Canyon is Meta’s latest HDD storage server chassis as a follow-on to the previous generation storage platform, Bryce Canyon. The Grand Canyon design retains the high level system architecture from Bryce Canyon - 4OU tall, single drawer dense storage chassis that contains up to 72 3.5” hard disk drives (HDDs), 2 compute modules, 1 NIC and 2 SSDs per compute module. This design will have an upgraded 1S Server card, UIC, Storage controller card and is Open Rack v2 (ORv2) compliant.

5. OVERVIEW

Grand Canyon is a refresh to the previous generation, Bryce Canyon. There were 4 major reasons that gave motivation to the need for the Grand Canyon project.

1. The need to address the shrinking runway for component and commodity end-of-life on Bryce Canyon and to enable continued HDD efficiency at Meta.
2. Improve the System Performance headroom (compute, memory bandwidth, interface bandwidths, etc) to ensure the HDD storage server SKU can push drives to their limits and allow introduction of software features that consume system resources but enable efficient use of drives.
3. Improve the HDD vibration damping features (both structural and acoustic) in the chassis via add-on options to allow for dense HDD capacity adoption in the chassis (driven by recent projections from HDD vendors using energy-assisted recording technology).
4. Introducing the 9.5mm heat sink E1.S form factor SSD

5.1 System Architecture

5.1.1 System Design and Flexibility

The architectural intent behind the Grand Canyon design is a flexible HDD-Storage hardware platform that enables multiple configurations for Meta’s needs. From a high-level architecture perspective, Grand Canyon will be an upgrade to Bryce Canyon while retaining a lot of similarities.

The Grand Canyon storage system is a 4OU system, with a majority of the components installed and serviced from the top. To enable this, there is an inner drawer design that fully extends the unit out of the rack, while it is still operational. A mechanical overview is shown in Figure 5.1

Multiple configurations of the chassis exist to satisfy various applications. The architecture is designed to maximize common components between configurations and modularize the components that differ. The configurations supported in Grand Canyon are dual storage server, single storage server and...
JBOD. In its dual storage server configuration, the chassis supports up to 72 drives and two compute modules. Each compute module connects to a Storage Controller Card (SCC) that controls 36 drives and is logically separate from the other compute module and the 36 drives it controls.

The only common component shared by these two compute-storage groups is the Drive Plane Board assembly (like a backplane) and incoming power (12V) delivered by the bus bar clip. Grand Canyon will also design in an OCP3.0NIC (SFF) and 2x E1.S SSDs per compute node in the chassis. The chassis is designed such that the highest failure rate components (HDDs, SSDs, NICs, server card, other PCBAs) are hot-swappable without affecting the other host that resides in the same enclosure.
5.1.2 System Improvements from Bryce Canyon

Table 5.1: System Improvements

<table>
<thead>
<tr>
<th>CONSIDERATION</th>
<th>DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Solution</td>
<td></td>
</tr>
</tbody>
</table>
| Implement front-serviceable data SSD with provision to hotswap i.e., without system power off | Pivot to front loadable E1.S form factor
Hot-swappable data SSD improves system availability |
| Designing with HDDs and SSDs as the server’s IO bottlenecks for all use cases | Grand Canyon will start off with 50Gbps NIC and provide an upgradability option to use 100Gbps NIC, if needed |
| Designing for Dual actuator adoption | Power delivery, thermal and vibration control will be designed into the chassis to support Dual actuator adoption.
CPU server card and NIC upgrades to support dual-actuator drives will be drop-in replacements |
| **DC Operations** | |
| Power cable track redesign to improve serviceability and reliability | Addition of a new power delivery board in the mid-section to keep the power cable constrained in the mid-section entirely |
| Better serviceability of the Drive Plane Board | Designed for slide-out and slide-in replacement of the Drive Plane Board (DPB) |
| Design for both ORv2 and ORv3 rack configurations | Design flexibility to ensure Grand Canyon can MP with Orv2 rack configuration but have the flexibility to be upgraded to Orv3 in future.
• Power delivery flexibility to move from 12V to 48V busbar
• Mechanical flexibility to move to Orv3 |
| **Components** | |
| CPU | Intel Cooperlake 26 core - TDP =91W (including PCH) |
| DIMM configuration | Dual Storage server (T5) – 4x16GB DDR4
Single Storage server (T7) – 4x32GB DDR4 |
| Boot SSD | m.2 2280 NVMe SSD |
| Data SSD configuration | 2x 2TB E1.S SSD per compute node inside Grand Canyon
i.e., total of 4x 2TB E1.S SSDs per Grand Canyon chassis |
| IOC | Broadcom Avenger - SAS4016W |
| Expander | Broadcom Margay - SAS4x48 |
5.2 System Components

This section outlines the major PCBAs and FRU-able commodities that make up the system, other than the HDDs.

5.2.1 Barton Springs (Codename for the Integrated 1S Server Card)

Barton Springs is the integrated 1S server card. It is a top-accessible PCBA once the drawer is pulled out of the chassis tub. As Compute workload and needs for DRAM bandwidth, connected SSD, special instructions on the CPU, etc varies quite a bit from Storage, advantages are achievable only when the Compute card designs are flexible and agile enough to adapt to evolving needs. In order to reduce the churn on a Storage chassis design tied to a server card form-factor that cannot be predicted to be constant, Grand Canyon breaks away from reusing an existing design and will standardize on a new form-factor defined by the maximum remaining volume in the chassis while accommodating 72 HDDs.

Barton Springs shall be designed to this form-factor specifically for Grand Canyon chassis to ensure we can achieve dense HDD packing within the chassis for greater advantages, make the server card form-factor modular and long-lasting to allow for CPU upgrades on the same chassis. Shown below in Figure

Table: Grand Canyon System Specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMC</td>
<td>Aspeed AST2620</td>
</tr>
<tr>
<td>NIC</td>
<td>OCP3.0 single host multi-sourced NICs</td>
</tr>
</tbody>
</table>
| Fans | Separate cages per Grand Canyon chassis
Rack Type 5 – 1 dual-rotor fan per cage
Rack Type 7 – 1 single-rotor fan per cage
Integrate FRU eeprom inside fans for traceability and I2C system interconnect to Fans |
| Vibration | Improving vibration dampening from structural and acoustic vibration sources in the chassis.
The chassis shall design in the following options:
1. Fan cage isolation from chassis via elastomer padding, fan grommets
2. Enable acoustic foam installation at strategic locations
3. DPB air gap seal to reduce air leakage and bring max fan PWM lower than 100%.
4. Lower fan blade count and better geometries
5. New material on HDD latches, if needed
6. Options to mount fan louvers to reduce air leakage on fan-failure and lower fan speeds to be less than 100%
7. Retain wireframe fingerguard from Bryce Canyon |
5.2 is a rendering of Barton Springs card with the CPU w/heatsink, PCH w/heatsink, a client m.2 SSD for boot purposes, and 4 DIMM sockets (1 DIMM per channel).

The design details of the server card will be covered under the Barton Springs 1S server card design specification document.

5.2.2 Storage Controller Card

The Storage Controller Card (SCC) is a top-accessible module (with the drawer extended) that contains the ICs required to translate PCIe connectivity from the Server card to SAS/SATA for the HDDs. The SCC supports:

- SAS IOC, a.k.a., HBA
- SAS Expander
- SAS connections to the front bulkhead (to enable JBOD [Just a Bunch Of Disks] functionality)

The SCC connects to Barton Springs via a PCIe Gen3 x16 link. There are 2 configurations of the SCC, normal (IOC+Expander populated) and JBOD (only Expander is populated).
The User Interface Card is a low speed management card that houses the BMC SoC, Trusted platform Module (TPM), and a removable BMC Storage module or BSM in an m.2 2230 form factor. Since the E.1S SSD and OCP3.0 NICs are front pluggable form factors, we envision these to plug into the Front drive plane board directly and the need for an IO module card (used in Bryce Canyon) now reduces to that of the UIC.

In addition to these components, the UIC also brings out on its front panel, a debug USB Type-A connector, a bicolor status LED and a mechanical power button for one half or one node of the chassis.

- The debug USB-A connector should multiplex the UART from the BMC, Expander and host and toggle between them using the UART-SEL button on the OCP debug card.
- The bicolor status LED should indicate good health or fault status from BMC, host, and expander.
- The mechanical power button controls the enable of the Hot swap controller (HSC) that enables power for each logical half of the chassis.
The UIC is a front accessible PCBA which plugs into the FDPB using SFF-TA-1002 card edge connector. Since the BMC sub-system is fully contained in the UIC, Grand Canyon now has the provision to upgrade the BMC solution without affecting the rest of the chassis design.

The dual and the single storage server configurations will deploy the full blown UIC.

There needs to be a second version called ‘UIC w/o BMC’ without the BMC, BSM, TPM circuitry. This version brings out the front panel elements only for use on the single storage server and JBOD configurations.

5.2.4 IOC Module

The single storage server configuration used in Type 7 rack utilizes the IOC module to allow for SAS expansion from the single storage server to 2x JBOD chassis. The IOC module is a front accessible PCBA that plugs into the front drive plane board (FDPB) in-place of the 4x E1.S SSDs.
Figure 5.5: IOC Module
5.2.5 E1.S SSD

As explained in the System Improvements section above, Grand Canyon will be designed with 4x E1.S SSDs per chassis, 2x per Barton Springs. E1.S has separate thermal case options. To make the thermal margins acceptable and to ensure we have a low fan RPM to ensure less vibration impact on the HDDs, it is imperative that we choose an option that’s better than the bare PCB E1.S option.

To stay within the 4OU chassis form factor, the only front pluggable form-factors that work in Grand Canyon are the heatspreader option and the 9.5mm symmetric case. The heat-spreader option requires Meta to design its own bracket to mount the SSD and make it a front-loadable FRU. In lieu of this, Grand Canyon will opt to design in the 9.5mm E1.S SSD case option.

Figure 5.6: E.1S SSD
5.2.6 OCP3.0 NIC

Grand Canyon hosts 2x single host OCP3.0 NICs in the small form factor (SFF), one NIC per Barton Springs.

5.2.7 Drive Plan Board (DPB)

The Drive Plane Boards (DPBs) sit at the base of the chassis. There are physically two Printed Circuit Boards (PCBs) that make up the drive plane board assembly, and they are connected via high speed connectors and an air baffle to create a single Field Replaceable Unit (FRU). The DPBs connect all of the boards in the system together, along with the drives, fans, etc. Its function is to support connectivity for the following:

- Single port SAS/SATA connections to HDDs (up to 72)
- PCIe Gen3 x4 connectivity to E1.S SSDs (up to 4) or PCIe Gen3 x8 connectivity to an IOC module (for JBOD expansion)
- PCIe Gen3 x16 to NICs (up to 2)
- Dual-rotor counter-rotating Fans (up to four)
- Drive power control (individual 5V/12V power control to each HDD and SSD slot)
- Sensors (ambient temperature, drawer open/intrusion)
- Incoming power (12V) distribution

Figure 5.8: Drive Plane Board (DPB) Assembly

The population of these components is dependent on the overall system configuration (see Section). Shown below is a snapshot of the population options for the front accessible devices on the DPB. To enable this, there are 2 PCBA versions of the DPB assembly – one for Type 5 rack and one for Type 7 rack.
Figure 5.9: DPB Front Access Device Configurations (Bottom View)

Type 5 (Dual Storage Server) Front Access Device Configuration

Type 7 Headnode (Single Storage Server) Front Access Device Configuration

Type 7 JBOD Front Access Device Configuration
5.2.8 Power Transfer Board (PTB)

The DPB shall be designed to distribute 12V as the main power plane to all loads in the system. In ORv2 rack, this DPB 12V can tie directly into the busbar 12V supply.

Grand Canyon PCBAs should be designed in such a way that it is flexible enough to be reused for the ORv3 design with 48V busbar. The Power Transfer Board serves the purpose of abstracting the busbar voltage change away from the rest of the system and delivering only a constant 12V to the rest of the system. It is recommended to physically fit in a 48V to 12V power conversion solution (either a Brick or Discrete) in a thermally optimal location behind the DPB so as to enable the same DPB and system PCBAs to be reused for an ORv3 configuration in the future. The expectation is to reuse the chassis, PCBAs and layout as-is without change, so Grand Canyon designed today should allocate room for the power conversion solution and enable a bypass option for use in the ORv2 case.

5.2.9 Power Cable-Track and Power Delivery Board

![Diagram of Power Delivery Board (PDB) & Power Transfer Board (PTB)](image)

Figure 5.10: Power Delivery Board (PDB) & Power Transfer Board (PTB)
5.3 System Configurations

This section outlines the different possible configurations of the overall system. There is a base Grand Canyon chassis configuration, but a few Field Replaceable Units (FRUs) can be installed to create simple JBODs, or single and dual integrated storage servers. Table 2 shows the current configurations considered for production.

The 3 configurations are differentiable from their faceplate as well as can be seen on the following pages.
Figure 5.12: Faceplate Configurations
5.3.1 Dual Storage Server

The nominal configuration described thus far is the Dual Storage Server configuration. This configuration is used for Type 5 racks. The block diagram for this configuration is shown in Figure 5.13.

![Figure 5.13: Dual Storage Server System Configuration Block Diagram](image)

5.3.2 Single Storage Server

The Single Storage Server configuration is intended for applications that use a lower compute-to-storage ratio i.e., more disks per compute card. The block diagram is shown in Figure 5.14. This configuration serves as the head node for a Type 7 configuration, with several JBODs connected downstream to increase the number of drives behind a single server node. To connect all 72 drive slots within the chassis, the internal MiniSAS HD connector on both SCCs can be connected via an x4 cable.
5.3.3 JBOD

The JBOD configuration allows for an external compute module to connect to the Grand Canyon system. This compute module is cabled to the system via a SAS connector that is exposed on the front panel of the chassis.

In this configuration, the SCC does not have a SAS IOC populated. The server cards, NICs, SSDs are also not installed, and the fan control is coordinated by the SAS expander in lieu of the UIC w/o BMC.
5.4 Systems Management Overview

The system is managed by two to four controllers (two BMCs and two expanders). Each of these controllers (referred to as peers) have ownership of part of the chassis. Interactions among these peers are limited to:

1. Insertion detection of all peers and Barton Springs
2. Heartbeat of all peers
3. Access to master hot swap controller (through multimaster I2C)
4. Access to TACH sensor (through multimaster I2C)
5. Fan speed control through PWM comparators

At a high level, the BMCs own the sensors on the UIC, Barton Springs, E1.S and the IOC chip on the SCC. The expanders own other sensors in the chassis, including HDD S.M.A.R.T. temperature.
The BMCs and SCCs all generate Pulse Width Modulation (PWM) for fan speed control using sensor inputs to determine fan speed. These PWM signals are compared using a PWM comparator and the highest requested fan speed is selected and used to control the setting for all 4 fan’s PWM speed.

Each peer in the system monitors the insertion and heartbeat of other peers. If an expected peer is not presented or does not generate proper PWM, the firmware should increase fan PWM to a predefined value (e.g., 100%).

I2C device ownership information (per-configuration) can be found in the following Tables.

BMC owned I2C devices:

<table>
<thead>
<tr>
<th>BMC I2C Bus #</th>
<th>I2C Devices (Slave Address)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>BIC (0x40)</td>
<td>IPMB connection between BMC and BIC (Bridge IC) on Barton Spring Server Card</td>
</tr>
<tr>
<td>3</td>
<td>BS FPGA (0x1E)</td>
<td>Barton Springs FPGA Slave Address</td>
</tr>
<tr>
<td></td>
<td>Barton Springs FPGA Version (0x80)</td>
<td>Barton Springs FPGA Version Register</td>
</tr>
<tr>
<td>4</td>
<td>TMP75 (0x94)</td>
<td>UIC Temperature Sensor</td>
</tr>
<tr>
<td></td>
<td>M24C64 (0xA0)</td>
<td>UIC FRU EEPROM</td>
</tr>
<tr>
<td>5</td>
<td>UIC FPGA (0x1E)</td>
<td>UIC FPGA Slave Address</td>
</tr>
<tr>
<td></td>
<td>UIC FPGA Version (0x80)</td>
<td>UIC FPGA Version Register</td>
</tr>
<tr>
<td>6</td>
<td>EEPROM (0xA8)</td>
<td>BSM FRU</td>
</tr>
<tr>
<td>7</td>
<td>PCA9555 (0x4E)</td>
<td>I/O Expander for Decoding for Debug Card</td>
</tr>
<tr>
<td></td>
<td>Sensor Type</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>PLDM Sensor (0x3E)</td>
<td>NIC Temperature and PLDM sensors</td>
</tr>
<tr>
<td></td>
<td>NIC FRU (0xA0)</td>
<td>NIC FRU EEPROM</td>
</tr>
<tr>
<td>9</td>
<td>ADC128 (0x3A)</td>
<td>E1.S/IOCM and NIC Voltage Sensor (Main Source)</td>
</tr>
<tr>
<td></td>
<td>LTC2991 (0x90)</td>
<td>E1.S/IOCM and NIC Voltage Sensor (2nd Source)</td>
</tr>
<tr>
<td></td>
<td>TCA9555 (0x42)</td>
<td>I2C to GPIO E1.S & MISC</td>
</tr>
<tr>
<td></td>
<td>TCA9555 (0x48)</td>
<td>I2C to GPIO Insert & PWRGD</td>
</tr>
<tr>
<td>10</td>
<td>SCC Expander (0xE2)</td>
<td>SCC Expander Slave Address</td>
</tr>
<tr>
<td>11</td>
<td>SCC IOC (0x68)</td>
<td>SCC IOC Slave Address</td>
</tr>
<tr>
<td>12</td>
<td>NVMe SMBUS Address</td>
<td>E1.S 0 Temperature Sensor</td>
</tr>
<tr>
<td></td>
<td>(0xD4)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>IOCM IOC (0x68)</td>
<td>IOCM IOC Slave Address</td>
</tr>
<tr>
<td>13</td>
<td>NVMe SMBUS Address</td>
<td>E1.S 1 Temperature Sensor</td>
</tr>
<tr>
<td></td>
<td>(0xD4)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ADS1015 (0x92)</td>
<td>IOCM Voltage Sensor (Main Source)</td>
</tr>
<tr>
<td></td>
<td>LTC2990 (0x98)</td>
<td>IOCM Voltage Sensor (2nd Source)</td>
</tr>
<tr>
<td></td>
<td>TMP75 (0x94)</td>
<td>IOCM Temperature Sensor</td>
</tr>
</tbody>
</table>
6. RACK COMPATIBILITY

NOTE: To achieve interoperability, new specifications and products seeking recognition shall be compatible with an OCP adopted architecture: ORv2, ORv3, or OpenEDGE architectures. This is required for storage enclosures and systems, rack frames, and any enclosure which holds a server sled or edge device sled. Compatibility is also desired of server sleds and edge sleds. All other device types not listed are not required to support this.

The Grand Canyon platform will be used in a few configurations to meet the needs of several rack types, as outlined in future sections. Grand Canyon is ORv2 compliant.

7. RACK IMPLEMENTATION

The Grand Canyon platform will be used in a few configurations to meet the needs of several rack types, as outlined in the following sections.

7.1 Type 5

In this configuration, there are two storage servers with 36 drives each inside the Grand Canyon chassis. The compute portion is an integrated 1S server.
7.2 Type 7

There will be two different Grand Canyon configurations populated within a rack of this type. There will be a main Grand Canyon unit with 1 compute card, and two Grand Canyon JBODs (without a compute card) connected behind this, for a total of 216 drives in each functional system. In the base unit, there will be a single 1S server that connects to all drives in the base chassis.
7.3 Compatibility with Open Rack Standard

All specifications and products seeking product recognition for use in Open Rack shall comply with Open Rack specification revision 2.0.

8. SYSTEM INTERACTION AND SERVICEABILITY

8.1 Labeling of Logical Domains

The drive domains are physically divided between the front and rear of the chassis via the two DPBs. The compute modules are separated in a left/right fashion. On the following page, Figure 8.1 shows the 2 logically separate systems using yellow and blue highlights. Consequently, the correct logical division of the two domains must be made clear through highly visible labeling.
One important design point that makes drive swaps intuitive is to implement light pipes near the drives to bring the light from the activity/fault LEDs to a visible location. If the labels are metal-backed or are otherwise normally opaque, but clear over the light pipe area, this will help contain the light. Also, the drive numbers can also be opaque, essentially creating a backlit number for the drive slots.

The shape pointing to the drive should be a trapezoid instead of a triangle to maximize space for drive numbers for clear identification of the drive slot, while at the same time making the direction of the indicator obvious. A close-up of the drives showing these indicators is shown in Figure 8.2.
8.2 LEDs and Buttons

This section gives an overview of the various LEDs and buttons within the Grand Canyon system.

8.2.1 Front Panel Buttons and LEDs

In all chassis configurations, there will be a power button with integrated system power LED, reset button, a bicolor system status/fault LED, and a USB debug port per host/bmc/expander. There will be two instantiations of the front panel, one for each of the two logical systems in the physical chassis. These features will all be located on a User Interface Card (UIC).

There are two NIC slots per logical system. As seen in Figure 8.3 below each NIC, if populated, has an activity LED and a Link LED. There are four E1.S drives per system, 2 per logical domain. Each SSD has an activity LED and a fault LED.
8.2.1.1 Power Button

The functionality of the power button is to physically turn on/off the hot swap controller that gates the power to one server subsystem of the Grand Canyon system. This is used for service events, (such as server replacement or SCC replacement) to allow the technician to power off the server subsystem to perform this action. The button shall be a push-on/push-off type switch, so that the state is persistent until an operator pushes the button again. The system should ship with this button in the “ON” position.

8.2.1.2 Power LED

In order to minimize the space needed and to make servicing the system intuitive, the system power LED should be integrated into the power button. The LED shall be blue. The LED will have the ability to be controlled by both the SCC and the BMC to allow blink patterns for system identification. A blink pattern of 1s on, 1s off will indicate unit identification.

8.2.1.3 Reset Button

The reset button shall be a momentary on push button switch with a black plunger. This reset button is routed to the SCC card to serve as a hard reset signal for the expander. The reset button on the USB debug card can be used along with UART select function key to reset the BMC or the server card.

The system status/fault LED informs the user of the system health and whether there is a problem with the system. This will be driven by the expander or the BMC to indicate any faults that happen with the
sensors monitored by them. The LED shall be solid yellow during a fault and solid blue indicating everything’s good.

<table>
<thead>
<tr>
<th>BMC</th>
<th>Barton Springs</th>
<th>Event</th>
<th>Bicolor LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>system off</td>
<td>Off</td>
</tr>
<tr>
<td>Booting</td>
<td>off</td>
<td>BMC booting</td>
<td>Solid Yellow</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>BMC ready, Barton Springs power off</td>
<td>Blinking Yellow</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>Barton Springs ready, no faults</td>
<td>Solid blue</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>BMC Fault critical (BMC health, sensors health, NIC health)</td>
<td>Solid Yellow</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>Barton Springs Health Fault Status Critical</td>
<td>Solid Yellow</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>BMC Fault critical (BMC health, sensors health, NIC health)</td>
<td>Solid Yellow</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>Expander Fault critical (Expander, sensors health)</td>
<td>Solid Yellow</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>System identification</td>
<td>NA</td>
</tr>
</tbody>
</table>

8.2.1.5 USB Debug Port

Grand Canyon Platform has one OCP debug USB connector per compute card/BMC/Expander located at the front panel. The connector supports the OCP USB3.0 debug card. Information in regards to the host and their POSTcodes/SEL/config are displayed thru the LCD of the OCP USB3 debug card. The UART select button on the card allows the users to walk through the UART console of the host, BMC or the Expander for their information.

The power and reset push buttons on the USB debug port should apply to the host, BMC or the expander based on the UART selector option. The USB port on the debug card is purely meant for BMC. Users may insert a thumb drive here to allow data transfer to/from USB etc.

8.2.1.6 SSD LEDs

The E1.S SSD has two LEDs – Power and Fault/Locate. The Power LED is a mono-colored blue LED which indicates if the system is currently powered. The Fault/Locate LED is a mono-colored amber LED which indicates SSD fault locations along with drive identification.
8.2.1.7 NIC LEDs

The NIC LEDs will follow the OCP NIC 3.0 specification and will have two LEDs – Link and Activity. The Link LED is a bi-colored green/amber LED which denotes link status. The Activity LED is a mono-colored green LED which shows whether the link is in use.

<table>
<thead>
<tr>
<th>Link Status</th>
<th>Link Activity</th>
<th>Link LED</th>
<th>Activity LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Link</td>
<td>No</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Link at Max Speed</td>
<td>No</td>
<td>Green</td>
<td>Off</td>
</tr>
<tr>
<td>Link at Max Speed</td>
<td>Yes</td>
<td>Green</td>
<td>Blink (1/2Hz - 5 Hz)</td>
</tr>
<tr>
<td>Linked below Max Speed</td>
<td>No</td>
<td>Amber</td>
<td>Off</td>
</tr>
<tr>
<td>Linked below Max Speed</td>
<td>Yes</td>
<td>Amber</td>
<td>Blink (1/2Hz - 5 Hz)</td>
</tr>
</tbody>
</table>

8.2.1.8 IOC Module LEDs

There are 2 mini-SAS HD connectors on the IOC modules to connect the T7 head node to 2x JBODs.

There is a single blue/yellow LED per MiniSAS HD port. The behavior of the LED is described below on the following page.

- **Solid blue** – All four lanes up and linked at 12Gb SAS
- **Solid yellow** – Fault/warning
- **Off** – No cable present/link is down

8.2.3 HDD LED behaviors

Each drive slot has a single light pipe with an LED indication as to the state of the drives. The behaviors are described below, and summarized in a table to identify the various states:

<table>
<thead>
<tr>
<th>System Status</th>
<th>Drive Status</th>
<th>Power LED</th>
<th>Fault/Locate LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Service Allowed</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>On</td>
<td>Drive Okay</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Off</td>
<td>Fault</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>On</td>
<td>Locate</td>
<td>On</td>
<td>Blink</td>
</tr>
<tr>
<td>Off</td>
<td>Locate</td>
<td>Off</td>
<td>Blink</td>
</tr>
<tr>
<td>On</td>
<td>Fault</td>
<td>On</td>
<td>On</td>
</tr>
</tbody>
</table>
- **Drive powered off/ not installed** – No LED illuminated
- **Drive powered on and PHY linked to Storage Controller Card** – Blue LED illuminated
- **Drive fault** – Yellow LED illuminated
- **Drive identify** – Blinking yellow LED. If a drive is powered on, this behavior will show the yellow LED illuminated for one second, blue LED illuminated for one second, repeating. If the drive is powered off, this would appear as a yellow LED on for one second, off for one second, repeating.

The following table identifies different conditions within the box, and the respective behaviors of the LEDs.

<table>
<thead>
<tr>
<th>Status</th>
<th>LED Indication</th>
<th>Blue (ACT)</th>
<th>Yellow (Fault)</th>
<th>Mechanical Code</th>
<th>Expander Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Drive</td>
<td>No</td>
<td>Off</td>
<td>Off</td>
<td>Empty Slot</td>
<td>No</td>
</tr>
<tr>
<td>Drive Not Seated (or backwards)</td>
<td>No</td>
<td>Off</td>
<td>Off</td>
<td>Latch Won't Close</td>
<td>No</td>
</tr>
<tr>
<td>Drive Powered On, no Link</td>
<td>Yes</td>
<td>Blink (1s on, 1s off)</td>
<td>Off</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Drive Powered On, SAS/SATA Link estab.</td>
<td>Yes</td>
<td>On</td>
<td>Off</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Drive Faulted</td>
<td>Yes</td>
<td>Off</td>
<td>On</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Drive Identify (Drive Off / Not Present)</td>
<td>Yes</td>
<td>Off</td>
<td>Blink (1s on, 1s off)</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Drive Identify (Drive On)</td>
<td>Yes</td>
<td>Blink (1s on, 1s off)</td>
<td>Blink (1s on, 1s off)</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

8.2.4 Fan Module LEDs

The fan modules have LED indications to indicate the health of the fans:

- **Blue** – When illuminated, indicates fan module health is good (actively controlled via the SCC)
- **Yellow** – When illuminated, indicates a fan fault

8.3 Hard Drive Serial Number Window

Grand Canyon features drive latches that have openings to allow the operator to scan the drive serial number if it confirms to the open window. The details of this window are shown in Figure 8.4.
8.4 Service Operations

The Grand Canyon system provides hot swap controllers on the power rails, but the system will not support hot swap of the SCC, NIC or compute module due to PCIe surprise removal/insertion events. This functionality can be added later if needed, as the electrical subsystem supports this. The drive slots, however, all support hot plug.

8.4.1 HDD Replacement

The drives are all hot pluggable, and it is up to the service flow if the drives are spun down or not before removal. To replace a drive, the latch should be opened and pulled up to remove the drive from the system. By pulling up on the latch once it is opened to a vertical position, the drive is partially removed from the system to allow easy access to grab the drive. A new drive can then be inserted, and then the latch can be closed to lock the drive into place.
8.4.2 SSD Replacement

SSDs are hot-swappable so there is no need to power off the system before an SSD swap. To replace the E1.S SSD, release the ejector latch and pull the SSD out from the front panel. Replace a new SSD in its place and lock in the ejector latch.
8.4.3 SCC Replacement

To replace the SCC, the A/B domain should be shut down via the power button on the front panel module. The power button is illuminated blue while the power is on, and turns off when the power is off to that portion of the system. The SCC can then be removed, a new module installed, and then the power button can be pressed to turn the system back on.

To remove the SCC, first remove the air baffle above it. Pull the latch tab on the module and rotate the ejector until it is fully disengaged. Pull on the ejector handle to remove the SCC. To install, guide the SCC into the slot and rotate the ejector until it fully bottoms out. Place the air baffle back on.
8.4.4 UIC Replacement

To replace the UIC, the A/B domain should be shut down via the power button on the module. The power button is illuminated blue while the power is on, and turns off when the power is off for that portion of the system. The UIC can then be removed, and a new UIC module can be installed. The power button is pressed to turn the system back on. To replace the UIC, release the ejector latch and pull the UIC out from the front panel. Replace a new UIC in its place and lock in the ejector latch.
8.4.5 UIC TPM & BSM Replacement

The UIC has a removable TPM (Trusted Platform Module) and BSM (BMC Storage Module).

To replace the TPM, unfasten the screw holding it down and pull it away from the UIC. Replace it with a new TPM by aligning it with the connector and pushing it down. Secure with the screw.

To replace the BSM, pull back on the spring loaded latch to release the module. Pull the BSM out of the connector and away from the UIC. To replace the BSM, install it into the connector and push down on it near the spring loaded latch until it clicks into place.
8.4.6 NIC Replacement

To replace the NIC, release the ejector latch and pull it to unseat the NIC from the connector and remove it out. Replace with a new NIC and follow the same steps in reverse order to latch the NIC onto the system. It is recommended for the NIC to be swapped only when the system is powered off.
8.4.7 Barton Springs Replacement

To replace the compute module, the A/B domain should be shut down via the power button on the front panel module. The power button is illuminated blue while the power is on, and turns off when the power is off to that portion of the system. The compute module can then be removed, a new module installed, and then the power button can be pressed to turn the system back on.

The SSD and DIMMS are FRUs, and can be replaced separately if they are identified as failed instead of the compute module itself. To remove the compute module, first remove the air baffle above it. Then, pull the latch tabs on both ejectors and rotate the ejectors until they are fully disengaged. Pull on the ejector handles to remove the compute module. To install, guide the module into the slot and rotate ejectors until they fully bottom out. Place the air baffle back on.
On the T7 head node configuration, the IOC module can be replaced on the front panel after the system A/B power is turned off. The power button is illuminated blue while the power is on, and turns off when the power is off. Once the power is off, the IOC module can be ejected with the help of the ejector latch. Once a new card is loaded in, power can be turned back on for the system.
8.4.9 Fan Module Replacement

The fan modules are hot-swappable from the rear of the chassis. Each fan module consists of one fan integrated into an easy to service module. Each fan is a dual rotor setup and the fan module as is will be a FRU. In the Type 7 configuration there may only be a single rotor fan contained in the module.

If the fan is removed for too long, the remaining fan module may increase its fan speeds in an effort to keep the system within its thermal operating limits. In order to remove the fan, squeeze the two latches on the bottom of the module inward. Pull on the module until it comes out. To install a new fan, just slide it into the chassis until the latches click into place.
8.4.10 Fan Louver & Honeycomb Replacement

Behind the fans are a set of louvers and honeycomb. The purpose of the honeycomb is to reduce acoustic vibration from the fans. The purpose of the louvers is to reduce backflow in the case of fan failure or in a service scenario.

First, remove the fan module from the chassis. In order to service the louver module, press on the two tabs on top of the module and pull it out. Once the louver module is out, you can remove the honeycomb. To remove the honeycomb, pull on the tab at the top of the honeycomb module and pull it out. In order to replace both modules, repeat the steps in reverse.
Figure 8.14: Fan Louver Module Removal

Figure 8.15: Fan Honeycomb Module Removal
8.4.11 Drive Plan Board Replacement

There are two DPBs in the system, but these are always replaced as a single unit. For all intents and purposes, these should be considered as a single FRU – it is only divided due to manufacturing limitations. Replacing the DPB should be a rare event, but if it’s required, perform the following:

1. Power down both sides of the system via the power buttons on the front panel.
2. Unplug the cables on the front of the system.
3. Pull the drawer out to its fully extended position.
4. Remove the SCCs, NICs, SSDs, UICs and compute modules.
5. Unlatch and lift up on all of the drives, which will hold them up and away from the DPB.
6. Pull out and rotate the retaining plunger on each side of the chassis until it is locked in the open position.
7. Unscrew four thumb screws on the bottom of the DPB assembly, and slide the DPB towards the front of the chassis to remove the board.
8. Install the new DPB assembly by aligning along the DPB card guide and sliding back in until the DPB engages with the power delivery board.
9. Follow steps 1-6 in the reverse order to put all of the components back into the system.
Figure 8.16: Drive Plane Board Replacement
8.4.12 Cable Track and Power Delivery Board Replacement

There is one bus bar power module consisting of medusa cable track and power delivery board. Perform the following to replace the bus bar power module:

1. Power down both sides of the system via the power buttons on the front panel.
2. Unplug the cables on the front of the system.
3. Remove the entire chassis from the rack.
4. Pull the drawer out to its fully extended position.
5. Remove the rear airflow baffle by lifting it at the finger touchpoints.
6. Disconnect the bus bar bracket and connector from the chassis. First, remove the two screws attaching the connector to the chassis. Then, release the two captive screws holding the bracket and lift it up, ensuring the two tabs on the bottom are disengaged.
7. Release the mechanism to remove the bus bar power module. Lift up the locking tab on the power module, press on the button under the handle, and push the handle forward.
8. Pull the bus bar power module out of the drawer.
9. Follow step 1-6 in the reverse order to put all of the components back into the system.
Figure 8.17: Cable Track and Power Delivery Board Replacement
9. SYSTEM PERFORMANCE

Performance degradation at a system level can be due to interface bottlenecks like PCIe, SAS interfaces, or due to component bottlenecks like IOC IOPS limit or CPU performance or drive performance degradation due to vibrations. The system must be designed so that there is minimal degradation due to the system design from any of these aspects.

9.1 Designing the system interfaces without bottlenecks

Grand Canyon is a HDD storage server/JBOD and the data stored on HDDs are the IO movers on the system. Considering the typical and worst case workloads, the critical components were selected to ensure the Grand Canyon system has no interface bottlenecks for any of the configurations discussed so far.

Grand Canyon Type 5 configuration will be designed to accommodate Dual-actuator or Split-actuator HDDs and will provide optionality to allow for NIC upgrade to remove system interface bottlenecks.

![Diagram](image)

Figure 9.1: Type 5 Data Path Diagram

The Grand Canyon Type 7 configuration conserves power by actively powering off HDDs. At any given point in time, there will be only 4 HDDs per Expander powered on in the Type 7 configuration. Out of the 4 HDDs, only 3 HDDs will be actively serving IO and the 4th HDD is reserved to take over when an already active HDD is deemed bad and needs replacement.
9.2 HDD performance degradation due to vibrations

Several areas contribute to negative drive performance impact, such as surrounding disk drives and the fans. The system must be designed so that over the operating conditions, all drives are able to perform within the specified limits as outlined below.

The only exception to the requirements described above are during drawer removal and insertion operations for service. During these events, it is acceptable for the drive performance to be affected, but there must be no damage to the drives themselves (for example, head touchdown, etc.).
9.2.1 Normal Operating Environment (sustained operating conditions)

The system should have performance degradation <5% average across the system (up to 35°C, 1800m/6,000ft altitude), where every slot conforms to this <5% performance degradation requirement.

9.2.2 Unsustained Operating Conditions

The system should have performance degradation <10% max for any drive slot, and <10% average across the entire system. Examples of these operating conditions include single and multiple fan rotor failures, chassis intrusion/drawer pull-out during hot servicing of drives. This operating point includes the maximum temperature and altitude operating points (up to 35°C, 1800m/6,000ft altitude). The maximum service time by design should accommodate 10 mins of drawer pullout with the system remaining operational and no components reaching critical thermal conditions.

9.2.3 Design Criteria to Enable Chassis Longevity

Grand Canyon will be designed to support dense HDDs (advent of energy assisted recording) and shall be designed to adopt the projected HDD capacities for a 5 year lifetime from its release date. To that point, adding support to the chassis for a drive capacity 3 or 4 or 5 years out in time is a waste today. Grand Canyon shall be designed with multiple options to dampen/attenuate structural and acoustic vibrations seen by the HDDs and enable phasing in these options with HDD capacity bump-up as needed, to ensure that the above performance degradation limits are met.

10. ELECTRICAL DESIGN

This section details the electrical design of the major system boards, the systems management topology, and other system details.

10.1 PCIe Topology

10.1.1 PCIe Mapping

The PCIe topology of the Grand Canyon system is shown in the diagram on the following page.
Figure 10.1 System PCIe Topology

The PCIe key commodity mapping is shown on the next page.
10.1.2 PCIe Clocks and Resets

The PCIe clocks and resets originate from the compute server, and connect to the various PCIe devices in the system. The routing of the clocks and resets is shown below in Table 10.1 and Figure 10.1. Due to the nature of PCIe reset signals, buffers with Schmitt Triggers should be used if the traces are deemed too long to have a sufficient edge rate.

Table 10.1: PCIe Clock Info

<table>
<thead>
<tr>
<th>PCH clock output</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLKOUT_SRC_3</td>
<td>SCC board (IOC)</td>
</tr>
<tr>
<td>CLKOUT_SRC_4</td>
<td>OCP NIC 3.0</td>
</tr>
</tbody>
</table>
Figure 10.3: PCIe Clock Topology

Figure 10.4 describes all critical resets in the Grand Canyon system. Figure 10.4 also has the PCIe resets highlighted in green color. The compute node triggers the resets when appropriate. The SCC and E1.S drives receive the PERST signal directly from the compute node. The BMC is also sent a copy for informational purposes. The FPGA on the UIC card is responsible for the NIC power sequencing so it will ensure the NIC is powered on properly, receive the PERST signal from the CPU and relay the PERST to the NIC.
10.2 System Management

The systems management on Grand Canyon must take into account its modularity. As covered earlier, there are several configurations that are possible: two BMCs and two SAS expanders (Dual Storage Server), a single BMC and two SAS expanders (Single Storage Server), and with SAS expanders alone (JBOD).

10.2.1 Device Management signaling

There are various connectivity protocols at work connecting the various devices and chips within the system. The Grand Canyon design revolves around the following three configurations:
● **Dual Storage Server**: Two BMCs and two SAS expanders reside in the box.
 ○ The BMCs perform the bulk of the systems management functions, while requesting some information from the expanders over dedicated I2C lines via IPMI protocol. The expanders manage the functions related to the drives, such as drive insert, power control, and LEDs. The expander also manages the IOC.
 ○ Between the BMC and expander, there are some shared resources – the elements on the SCC (FRUID, voltage monitor, etc.), as well as on the DPB (e.g., temperature sensors). Both the BMC and expander can initiate requests to poll the devices; however, this “multimaster” implementation can be augmented with GPIO lines between the BMC and expander. These lines can be used to request and grant access to these shared resources. Spare pins are provided for this reason.
 ○ Each BMC manages its connected Barton Springs server, SCC, and drives independently from the other BMC. The only shared resource should be the fans and the busbar HSC (P12V_CLIP).

● **Single Storage Server**: One BMC (e.g. BMC-A) and two expanders reside in the box. The singular BMC performs the bulk of the systems management functions. However, the BMC must be able to communicate to the second expander in order to request information that is not directly accessible to the BMC.

● **JBOD**: Two SAS expanders reside in the box. They take over the entire systems management.

To accommodate for the various configurations, the BMCs need to be aware if another healthy BMC resides in the box and also the configurations of the SCCs (to distinguish between Dual Storage Server and Single Storage Server configurations). The expanders also need to be aware if healthy BMCs are present (to distinguish between JBOD from the other configurations). Several measures are taken to accomplish this:

- **To establish presence**, the presence (or “insert”) pins are routed between all UICs and SCCs.
- **To self-identify location**, slot identification bits are used.
- **To identify hardware type**, type identification bits are used.
- **To establish health**, a heartbeat signal is run from each BMC and expander to each of the other devices within the box.

10.2.2 I2C Topology

There are several I2C devices in the system. The tables below break down the I2C connectivity from the 2 system management masters – BMC and Expander to the various devices in the system.

Table 10.2: I2C busses originating from BMC
Table 10.3: I2C busses originating from Expander

<table>
<thead>
<tr>
<th>Net Name</th>
<th>Destination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2C_EXP_SCL/SDA</td>
<td>SCC EXP <-> BMC</td>
<td>To UIC BMC</td>
</tr>
<tr>
<td>I2C_IOC_SCL/SDA</td>
<td>SCC EXP <-> SCC IOC</td>
<td>To SCC IOC, UIC BMC (RSVD)</td>
</tr>
<tr>
<td>I2C_SCC_SCL/SDA</td>
<td>SCC EXP <-> SCC sensors</td>
<td>To SCC FRU, temp sensor, EEPROM, voltage sensors, HSC_P12V_SCC, UIC BMC(RSV)</td>
</tr>
<tr>
<td>I2C_RMT_EXP_SCL/SDA</td>
<td>SCC EXP <-> RMT SCC EXP</td>
<td>To remote SCC EXP</td>
</tr>
<tr>
<td>I2C_DPB_SCL/SDA</td>
<td>SCC EXP <-> DPB sensors</td>
<td>To DPB FRU, temp sensor, and voltage sensors, HSC_P12V_A/B</td>
</tr>
<tr>
<td>I2C_HDD_CTRL_SCL/SDA</td>
<td>SCC EXP <-> IO expanders</td>
<td>To HDD power and insert, Fan insert, Drawer closed, RMT SCC INS</td>
</tr>
<tr>
<td>I2C_HDD_LED_SCL/SDA</td>
<td>SCC EXP <-> IO expanders</td>
<td>To HDD ACT/FLT LEDs, Fan LEDs</td>
</tr>
<tr>
<td>I2C_FAN_SCL/SDA</td>
<td>SCC EXP <-> Fan, HSC_CLIP</td>
<td>To fan control, HSC_P12V_CLIP</td>
</tr>
</tbody>
</table>
The FRU EEPROMs in the system all follow the IPMI FRU EEPROM specification.

BMC to Expander I2C bus is based on IPMI protocol. This bus is used by Expander to log sensor info and error codes into the BMC.

BMC to IOC I2C bus is based on MCTP. The expectation for this bus is to enable BMC to get error codes, and debug information from the IOC for better monitoring and observability of the system. Host kernel driver (mptXsas) will report error/warning codes today for IOC, or Expander or SAS/SATA HDD related issues. We want data that is not reported on the host kernel like deeper logs, error code in the ring buffer of the controller or expander to be relayed to the BMC.

Shown below is a comprehensive system level block diagram of the I2C buses.

10.2.3 USB, SPI, JTAG

Figure 10.6 gives a detailed description of the USB, SPI and JTAG connections in the Grand Canyon system.
10.2.4 Network Controller Sideband Interface (NC-SI) requirements

NC-SI is used to provide a high speed sideband between the BMC and the NIC.

10.2.5 UART

Grand Canyon will support the OCP debug card that plugs into the modified USB3.0 connector (routes the UART onto the SuperSpeed pins, and provides for a UART channel select).

All UART ports on Grand Canyon are fed into the FPGA which has a multiplexer or MUX in it to route appropriately to enable various channels for monitoring, observability and ad-hoc debug reasons.

The UART channel select has the following behavior: The microcontroller on the debug card controls a GPIO expander on Grand Canyon via I2C. The GPIO expander then drives an output that mirrors the channel select button on the debug card. That is, when the button is pressed, the GPIO expander will pull the output low, and when the button is released, the GPIO expander will drive the output high. This UART channel select pin is routed to the BMC on the UIC which then drives the MUX logic in the FPGA to switch UART connections from various devices in the system to the front panel debug port. BMC console UART should be the default UART exposed to the debug port on the UIC. The following is a list of all UART ports available in the system:

- The IOC and Expander provide two UARTs – SMART UART or firmware UART, and a Serial debug or SDB UART. The SDB UART for IOC is purely for debugging, while the SDB UART for Expander is also for out-of-band firmware recovery.
- CPU console or host shell UART0 port. CPU's UART1 port is used for out of band (OOB) firmware recovery of the Expander ASIC.
- Bridge IC or BIC UART port is also routed to the FPGA. For details on the BIC, please refer to Barton Springs specification document.

The UART topology inside the FPGA is complex but is necessary to enable initial bringup and validation. We may decide to disable certain mux paths and make it simpler for later stages of the design.

Figure 10.7: System UART Architecture

10.2.6 GPIO (Insert) Topology

The block diagram shown below in Figure 10.6 represents the Grand Canyon presence connections. Each removable PCBA, commodity and fan has a presence pin which the system can detect and alert if a component is not installed for the appropriate T5 or T7 configuration.
10.2.8 Fan control

In the Grand Canyon fan speed control, all fans are set to the same speed. The speed is dictated by the PWM comparator which takes PWM input from the both BMCs, the SAS expander from each SCC card. Whichever sends the fastest PWM speed indicating the fans to spin faster is chosen. This is done because the temperature of the devices across the system may vary and to ensure appropriate
cooling for the hottest components, the highest PWM needs to be chosen. The TACH speed from each
fan is sent to a TACH monitor chip and this information can be read out from the system.

The SAS expanders and BMC also detect fan presence. If a fan is not present or there is some sort of
fan failure, the fans will ramp to near maximum speed to ensure system thermal safety.

The system is designed to remain in a safe operating temperature condition in the event of a single fain
failure. The remaining 3 fans will ramp their speed up to compensate for the fan that failed.

There are I2C buses to each fan so in the future if fans are upgraded to ones that have FRU
information it can be utilized without making any PCB changes. This feature allows the implementation
of the fan specific FSC. System should identify the fans and adapt accordingly. FSC tables should have
a default and generic fan table that applies for any 92mm fan from the selected vendors, this default fan
table can be used in the scenario where the system can not identify the fans. Fans from different
selected vendors should have similar performances.
Figure 10.9 below shows the overall fan system architecture.

10.2.9 System Configurations

10.2.9.1 Integrated (Dual) Configuration

In the Dual Storage Server configuration, the two BMCs handle the majority of systems management for the system. Each BMC manages a connected compute server, SCC, drives and power/system signaling independently of the other side of the system.

The SAS expanders handle communication with individual drives, monitor certain sensors and indicators through the system. Fan control and thermal regulation is controlled mutually from each chip. There are some shared resources as well and the BMC and expander can initiate requests to these devices over I2C or IPMB to the SAS expander on the SCC.

10.2.9.2 Integrated (Single) Configuration

In the Single Storage Server configuration, a single BMC controls the majority of systems management on its own side of the system, while the opposite-side SCC manages the opposite side of the system (its side).
10.2.9.3 JBOD Configuration

In this configuration, there are no BMCs. The two SCCs installed only have SAS expanders present. The SCC has resistor strappings to enable it to turn on automatically once power is applied. Upon successful sequencing of these DC-DC converters, SAS expander B is brought out of power on reset.

10.3 Signal Integrity requirements

10.3.1 SAS/SATA

All drive slots must be capable of 12Gbps and 6Gbps SAS, and tested to a BER of 10^{-15}. When testing SATA 6Gbps, the BER compliance should be tested to a BER of 10^{-15}.

10.3.2 PCIe

All drive slots must be capable of PCIe Gen3 and tested to a BER of 10^{-15}.

10.4 ESD Compliance

The Grand Canyon Chassis shall be designed such that all ESD events that may occur while interacting with the buttons, LEDs and connectors accessible from the front of the chassis, will be handled gracefully. This will be implemented with appropriate ESD protection devices. This includes, but is not limited to, the nets interfacing with the power and reset buttons, the USB and UART signals on the debug headers, as well as all externally interfaced LEDs that do not go through a long light pipe that would isolate them from ESD events. These ESD protection devices must be placed on the PCB as close to the component as feasible, with the ground path to dissipate the ESD event routed as short as possible to the ground plane.

11. POWER

11.1 Power Topology

Figure 11.1 shows the overall power topology of the system. The specific implementation in the other boards will be covered in later sections. The power topology breaks the two logical domains into separate power domains, each of which are protected by a hot-swap controller. Isolating the side power from the side power reduces the chance of failure on one side propagating to the other.

Because the fans are supplied by a voltage rail common to both A/B sides, care must be taken such that hot-swap of the fans will not bring down the voltage to either A/B side.
11.2 System Grounding Topology

The grounding topology of the system shall be implemented in such a way that there is a singular signal ground entry and exit point from the entirety of the PCB assembly to chassis ground. This is done to prevent any possible ground loops from forming. This will be accomplished by electrically isolating all PCBs from connection points to the chassis. This includes all screw down points, clamped metal features, support walls, etc. The topology of this is demonstrated on the following page in Figure 11.2.
In order to have a good ground reference connection for the Grand Canyon sliding drawer assembly, the grounding connection point will be implemented as a green 8 AWG grounding wire to the connector on the PTB. This ground wire will run through the cable track and be connected to the outer shell of the Grand Canyon chassis through a solidly connected bolt. The ground path will then travel through the chassis shell, into the support knives and into the rack.

This additional grounding wire is necessary to provide a direct ground connection from the Grand Canyon drawer to the outer chassis shell, and then to the earth grounded rack. This is necessary. There are metal rails attaching the drawer to the shell of the chassis, the rails are an electrically and mechanically dynamic system that will not provide a consistent or continuous ground path due to the rolling ball bearings, nylon bearing ball carriers and insulating grease coating all contact points.

11.2.1 Mechanical Interface Isolation Distance

Robust grounding isolation must be maintained between the PCB assembly signal ground, and all mechanical interfaces between the PCB assembly and the chassis. This restriction applies to all non-electrically connected screw and bolt holes, key-hole features, PEM® nuts and mounting points. In order to achieve this, a standard gap of 2mm, and an absolute minimum gap of 1 mm is necessary for all nets and planes on all layers of the PCB. This gap extends radially from anywhere there will be an interface between mounting hardware and the PCBs.

For anything contacting the top and/or bottom of the PCB, such as the maximum contact area of bolt head, brackets, nuts, etc., there shall be a 2mm isolation gap extending out of this maximum contact area. For any mechanical holes penetrating the PCB assemblies, the 2mm isolation gap extends outward radially from the hole on all layers of the PCB. These restrictions are illustrated on the following page in Figure 11.3.
11.2.2 Connector Housing Ground Topology

In order to further ensure that there is a singular signal ground connection point to the system/chassis ground, the outer shells of all connectors on the front of the Grand Canyon chassis must be isolated from signal ground on all PCBs through the connection of an RC filter network. This network serves two purposes first, to electrically isolate the shells from chassis ground, and secondly, to provide a tuning mechanism in order to optimize and reduce EM emissions from the connectors. This will be implemented similar to Figure XX below.

![Connector Housing Ground Topology](Image)

Figure 11.4: Connector Housing Ground Topology

The values of the resistor used should be $1 \text{ M}\Omega$, and the parallel capacitor should have a value of 1000pF with a voltage rating on the order of 2KV.

11.3 12V Busbar Cable Input

To enable the drawer to remain powered while the drawer is extended, a power cable is routed between a busbar clip and the drive plane board. One end of this cable has an ORv2 busbar clip, as detailed in the “Cubby Three bay shelf for Open Rack V2” specification."
The cables leading from the clip are to be terminated into a squeeze-to-release receptacle (P/N: TE 1600798-1, or equivalent), which mates with a vertical plug on the Rear Drive Plane Board. The cable construction should contain six (7) 8AWG high-flex wires, three used for 12V, and 4 for GND.

1 http://files.opencompute.org/oc/public.php?service=files&t=db28490bdd3afbff048dbcceae8d9f44

Figure 11.5: 12V Busbar Cable Connector

11.4 Drive Power Requirements
This section outlines the requirements of power supplies to the hard drives.

11.4.1 Staggered spin up requirements
The system must implement a staggered spin up of the hard drives. The spin up algorithm should spin up the drives as fast as possible, while keeping the total chassis power under 1200W. To do this, the drives will need to be spun up in groups. The first group can have many drives, due to plenty of power being available, but care needs to be taken not to draw too much from the onboard regulators.

11.4.2 Hot-Swap Requirements
The HDDs, SSDs must be capable of being electrically hot-swapped.

11.4.3 5V Conversion Failure Domains
5V conversion on the DPB for HDDs should be sized to provide enough current capacity to support dual-actuator HDDs in the chassis. To maintain failure domains at an acceptable size, no more than nine HDDs shall be present behind a single 5V conversion, unless there is evidence of better efficiency by having fewer HDDs per converter.
11.4.4 5V Conversion Loading Requirements

The 5V conversion should be able to maintain regulation at both full-load, as well as no-load (when all drives are powered off, or not inserted; this is distinctly separate from idle).

11.5 Hot-Swap Requirements

In addition to drives, all compute server cards, and SCCs should be capable of electrical hot-swap. That is, each of these components should be able to be removed without bringing down any voltage rails in the chassis. Furthermore, the overall chassis should be able to be plugged into a live busbar without dropping the main 12V rail of the rack. To achieve this, each hot-swappable component is protected by a hot-swap controller.

All hot-swap controllers must support the following features:

- Overcurrent protection (OCP), and short circuit protection
- Over voltage protection (OVP)
- Under voltage protection (UVP)
- In-rush current control when the system/board is inserted and powered up.
- MOSFETs must be kept within a safe operating area during all operational conditions such as power on/off and fault conditions.
- Default HSC response for fault conditions shall be latch off with retry as stuff option
- Implements a fast (<20us) overcurrent monitoring scheme that generates an alert based on a remotely programmable threshold.

11.5.1 Capacitive Load

To minimize the inrush current applied to the Open Rack V2 Power Shelf during initial rack power on and assertion of Yosemite V3 sleds into a live bus bar, special design consideration around input capacitance must be considered:

1. Between the bus bar and input of any load switch or HSC, the placement of input capacitors is disallowed (if truly necessary, this must be thoroughly investigated and validated).
2. The placement of input capacitors at the output of any load switch or HSC is allowed, but the total sum of capacitance from a single Yosemite V3 sled shall not exceed TBD mF (maximum of 226mF capacitive load per power zone).

11.6 IOCM Power Topology

The IOCM board power topology is shown in the diagram below.
Figure 11.6: IOCM Power Topology
11.7 Storage Controller Card Power Topology

The SCC power topology is shown in the figure below.

Figure 11.7: SCC Power Topology
11.8 User Interface Card Power Topology

The UIC power topology can be seen in the figure below.

Figure 11.8: UIC Power Topology

11.9 Power Budget

11.9.1 System Power Budget

The system power budget is limited by the busbar clip ampacity rating, which is 150A.
11.9.2 SCC Connector Power Budget

The power budget of the SCC connector is driven by the worst-case draw of the IOC and SAS expanders, and the connector should be sized to support at least 5.9A @ 12V.

11.9.3 IOCM Connector Power Budget

The power budget of the IOCM connector is driven by the worst-case draw of the SAS expander and the connector should be sized to support at least 3A @12V.

11.9.4 UIC Connector Power Budget

The power budget of the UIC connector is driven by the worst-case draw of the FPGA, BMC, USB hub, as well as other miscellaneous circuits and the connector should be sized to support at least 1.25A @ 12V.

11.10 Power Sequencing

11.10.1 SCC Power Sequencing

The SCC power sequencing must be compliant with the IOC and Expander sequencing requirements. The figures below are the power sequencing requirements for each chip utilized on the SCC board.

Figure 11.9: Expander Power Sequencing
11.10.2 Barton Springs Power Sequencing

The Barton Springs power sequencing will be covered in a separate Barton Springs specification document.

11.10.3 IOCM Power Sequencing

Expander power sequencing can be seen below in Figure 11.11 and Figure 11.12.
11.10.4 UIC Power Sequencing

The only power sequencing requirements on the UIC board are from the BMC chip. The sequence order and timing can be found in Figure 11.13.

![Figure 11.13: Power Sequencing Timing Values](image)

![Figure 11.14: Power Sequencing Timing and values](image)
12 INDIVIDUAL PCBA SPECIFICATIONS

12.1 Drive Plane Boards (RDPB & FDPB)

The Drive Plane Boards serve to connect all the PCBs in the system to create the platform. The boards are divided into a Rear Drive Plane Board and a Front Drive Plane Board, joined with a coplanar board connector. This is to allow the DPB PCBs to be small enough to easily manufacture. The division of components between the boards is shown in Figure 12.1.

12.1.1 Connectors

12.1.1.1 Compute Slots
There are two compute server slots in the Grand Canyon chassis. Each microserver is connected via two connectors, one for power and one for signals. The signal connector must support PCIe Gen 3 interfaces and also must be press fit or SMT type connectors.

12.1.1.2 SCC Connectors
The SCC connectors are comprised of several modules. These include an 85 ohm impedance module for PCIe, a 100 ohm module for the SAS and GPIO signals, a power module, and a guide pin.

12.1.1.3 E1.S/IOCM Connectors
The IOCM module is used only in the T7 configuration and utilizes two of the 4 E1.S connectors (EDSFF/SFF-TA-1006 spec) on the FDPB to make power connections and a signal path back to each of the compute server cards.

12.1.1.4 NIC Connectors
The NIC connectors on the FDPB utilize the standard OCP3.0 form factor connector (SFFTA-1002).

12.1.1.5 UIC Connectors
The UIC connectors utilize the industry standard 56 pin SFF-TA-1002 (P/N: Amphenol ME1005610202081, or equivalent).

12.1.1.6 HDD Connectors
There are 36 SAS drive connectors used on each DPB. These connectors shall be surface mount, 29-pin 12Gb SAS connectors. The contacts must be plated with a minimum of 30m There shall be at least two sources for this connector that are fully footprint-compatible.
12.1.1.7 12V System Power Input
The 12V cable from the busbar clip terminates into the RDPB with a squeeze-to-release connector that plugs into a receptacle (P/N: Amphenol JX412-50194, or equivalent).

12.1.1.8 DPB to DPB Power Connectors
There are two 12V power rails that connect through the DPB to DPB power connectors. To minimize the power loss, and ensure the best PCB routing practices should be followed. The PCB power planes should be routed on 2oz power planes.

12.1.1.9 DPB to DPB Signal Connectors
There is a signal connector for high speed and management signals to go between the FDPB and RDPB.

12.1.1.10 Fan Connectors
There are four connectors to support dual counter-rotating fans in the back of the chassis. These connectors are only on the Rear DPB. These should be Molex Mini-fit 0438100279 or 0438100059, or equivalent.

12.1.2 LEDs
Each drive slot has two LEDs that will illuminate a light pipe to allow the user easy identification of the drive status.

12.1.2.1 Drive Activity
The drive activity LED is a blue LED, and is controlled by the SAS expander on the SCC. The LED will be illuminated when the PHY link is established with the HDD. The expander should turn off the LED if the drive is not linked, spun down, etc. In the future, if there is a requirement to blink the LED to indicate activity, the expander can emulate this behavior.

In order to save power, the activity LED should only be illuminated when the drawer is pulled out for service. This is possible due to the drawer insertion signal that alerts the SCC that the drawer is open.

12.1.2.2 Drive Fault/Identification
The drive fault indicator is a yellow LED. This is controlled by the SAS expander on the SCC via I2C GPIO devices located on the DPB. The DPB must implement a circuit to ensure that when the fault LED is illuminated, the drive activity LED is not illuminated.

12.1.3 Thermal Sensor Placement
There will be thermal sensors placed on the FDPB and UIC card to monitor the air inlet temperature. There will be 4 thermal sensors on the FDPB and one on each UIC card as shown in the figures below.
Note that the front access devices (UIC, NIC, E1.S) don't sit in front of the FDPB but rather plug into connectors on the bottom side. The diagram is slightly misleading.

12.1.4 I2C Component Placement
Due to the large number of I2C devices on the DPB, care should be taken when placing the components to reduce the overall bus capacitance. For the drive-related I2C components, such as the drive insert, drive fault, and drive power control GPIO expanders, it would be preferable to group these close to the SCC connector to reduce etch length and capacitance. Care should also be taken to reduce branches in the routing that add to overall capacitance and reflections.

12.1.5 Drawer Detection Sensor
The Rear DPB must implement a drawer detection sensor. One state from this sensor should indicate that the drawer is completely closed, and the other state should indicate that it is between fully open and almost closed. This signal will go to the BMCs and SAS expanders to allow the chassis to understand that the drawer is open. The system is unable to cool drives adequately if the drawer is left open, and there may need to be a thermal throttling or emergency shutdown if left open too long.

12.1.6 Drive Control Signals
There are four different HDD control signals routed through the DPB - Drive Insert, Fault LED, Drive Power, and Drive Activity. The first three of the signals are Insert, Fault and Power.
12.1.7 PCB Details

12.1.7.1 Front DPB

12.1.7.1.1 Important Components and Features

The following figure details the major functional blocks of the Front DPB, and their placement on the PCB. More detailed information on the specific functional blocks can be found in the schematics as well as elsewhere in this document.

![Figure 12.2: DPB Functional Blocks and Placement](image-url)
12.1.7.1.2 PCB Key Dimensions
The figure below shows the PCBA outline for the Front DPB.

Figure 12.3: FDPB Dimensions
12.1.7.1.3 PCB Stackup

Figure 12.4: FDPB Stackup

Figure 12.5: FDPB Stackup
12.1.7.2 Rear DPB

12.1.7.2.1 Important Component and Features

The following figure details the major functional blocks of the Front DPB, and their placement on the PCB. More detailed information on the specific functional blocks can be found in the schematics as well as elsewhere in this document.

![Figure 12.6: RDPB Functional Blocks and Placement](image-url)
12.1.7.2.2 PCB Key Dimensions

The figure below shows the PCBA outline for the Rear DPB.

Figure 12.7: RDPB Dimensions
12.1.7.2.3 PCB Stackup

Figure 12.8: RDPB Stackup

Figure 12.9: RDPB Stackup

12.2 Storage Controller Card (SCC)

The following diagrams detail the major functional blocks of the SCC and their placement on the PCBs. This is detailed for both versions of the SCC, the Type 5 version with the expander and IOC, as well as the JBOD version with just the expander where the IOC is unpopulated on the PCB.
12.2.1 Storage Controller Card Configuration Diagram

![Diagram of SCC Block Diagram](image)

Figure 12.10: SCC Block Diagram

12.2.2 Storage Controller Card Configurations

The SCC has two configurations. The first is fully populated and is used in the T5 and T7 headnode. In the T7 headnode case, only one SCC has the IOC and the other does not. In the T7 JBOD configuration, both SCCs do not have an IOC chip and rely on the headnode for the IOC functionality.
12.2.2.1 Connector Configurations

Amphenol - (power connector) MPN: JX310-50387
Amphenol - (signal connector) MPN: JX310-50558
Amphenol - (signal connector) MPN: JX310-50704
Amphenol - (MiniSAS HD connector) MPN: G40H11331HR-W

12.2.5 Storage Controller Card PCB

12.2.5.1 Important Components and interfaces

Important SCC components can be seen in the PCB rendering on the following page in Figure 12.12.
Figure 12.12: SCC Important Components
12.2.5.2 PCB Key Dimensions

![Figure 12.13: SCC Dimensions](image)

12.2.5.3 PCB Stack up

![Figure 12.14: SCC Stackup](image)
12.3 IOCM

The following diagrams detail the major functional blocks of the IOCM and their placement on the PCBs.

12.3.1 IOCM Configuration Diagram

Figure 12.16 shows the IOCM high level block diagram.
12.3.2 IOCM Connectors
MiniHD SAS - Amphenol: MPN U92-A210-1001-70
12.3.3 IOCM Card PCB

12.3.3.1 Important Components and Interfaces

![Figure 12.17: IOCM Important Components](image)
12.3.3.2 PCB Key Dimensions

![IOCM Dimensions](image)

Figure 12.18: IOCM Dimensions
12.3.3.3 PCB Stackup

![Figure 12.19: IOCM Stackup](image1)

![Figure 12.20: IOCM Stackup](image2)

12.4 User Interface Card (UIC)

12.4.1 UIC Variants

There are two variants of the UIC, one with a BMC and one without. The BMC will be removed from the Type 7 system configuration.

- Type 5 - 2 UIC with BMC
- Type 7 headnode - one UIC with BMC and one UIC without BMC
- Type 7 JBOD - two UIC without BMC

The block diagram for the UIC card can be seen in Figure 12.21 below.
Figure 12.21: UIC Block Diagram
The major components can be seen below in figure 12.22 below.

Figure 12.22: UIC Key Components

12.4.2 BMC
The UIC card will utilize the Aspeed AST2600 series BMC. See BMC section for additional info about features and functionality.

12.4.3 CPLD
The CPLD will utilize the Intel Max10. For specific design details and implementations see the schematic and layout.

12.4.4 Connectors
The UIC is a front accessible PCBA which plunges into the FDPB using the SFF-TA-1002 card edge connector. Since the BMC subsystem is fully contained in the UIC, Grand Canyon now has the ability to upgrade the BMC solution without impacting the rest of the design.
There is one connector, a USB type A connector that is used for debug purposes. MFG: Singatron - P/N: 2UB4001-170101F - (Or equivalent).

12.4.5 USB Debug
The UIC card has a USB3.0 connector available for debug purposes. This connector is intended to work in conjunction with the OCP debug card to gather diagnostic information. The USB2.0 pins are routed to a USB hub located on the UIC and the USB 2.0 are repurposed for debug signaling.

12.4.6 BSM and TPM 2.0
The UIC utilizes the BMC Storage Module (BSM). It is mounted to provide security features as well as hold the BMC flash images. The BSM is in an m.2 2230 form factor. Figure 12.13 below contains the BSM block diagram for reference.

Figure 12.23: BSM Key Interfaces

The UIC also has a separate connector where a TPM2.0 module can be plugged in for system security purposes. The UIC utilizes the Infineon TPM 2.0 SLB9670 series parts.
12.4.7 User Interface Card PCB

12.4.7.1 PCB Key Dimensions

Figure 12.24: UIC Dimensions

12.4.7.2 PCB Stack up

Figure 12.25 UIC Stackup
12.5 Power Delivery Board (PDB)

12.5.1 Configuration Diagram

12.5.2 Connectors

PDB to PTB:
- Amphenol - MPN: 10106121-7000A01LF
- TE - MPN: 2322124-9

PDB to Power Cable:
- Amphenol - MPN: 10127402-23S1000LF
- Alltop - MPN: C29404-10643-Y
12.5.3 PDB PCB

12.5.3.1 Important Components and Interfaces
The PDB is a completely passive, pass-through PCB. The intent is that if the Grand Canyon system needs to migrate to the ORV3 rack, a 48V to 12V converter could be implemented on this board to support the ORV3 architecture.

Below is the overall block diagram for the PDB shown in Figure 12.28.

![PDB Block Diagram](image)

Figure 12.28: PDB Block Diagram
12.5.3.2 PCB Key Dimensions

![Figure 12.29: PDB Dimensions](image)

12.5.3.3 PCB Stack up

![Figure 12.30: PDB Stackup](image)
12.6 Power Transfer Board (PTB)

12.6.1 Configuration Diagram

![PTB Configuration Diagram](image)

Figure 12.31: PTB Configuration

12.6.2 Connectors

PTB to RDPB:
- Amphenol - MPN: 10127396-33H1410LF
- Alltop - MPN: C29507-10643-Y

PTB to PDB:
- Amphenol - MPN: 10127396-26S1000LF
- Alltop - MPN: C29506-10643-Y
12.6.3 PTB PCB

12.6.3.1 Important Components and Interfaces
On the PTB board there is only one major component, the HSC. The HSC is responsible for ensuring when the Grand Canyon system is slid into the bus bar, power is applied properly not damaging any components or interfaces. The HSC has a power good signal that is used to start the power up sequence of the rest of the Grand Canyon System.

The HSC is also needed to protect the system in the event of a short or failure. Telemetry like current, voltage, power, etc. can be read from the HSC through an I2C interface.

A block diagram of the critical interfaces can be seen below in Figure 12.32.

![Figure 12.32: PTB Block Diagram](image)
The power circuit diagram can be seen below in Figure 12.33.

Power

- Standard voltage: 12.5V
- OVP: 13.73V
- UVP: 11V
- OCP: 166A

Figure 12.33: PTB Sequence and Distribution Diagram
12.6.3.2 PCB Key Dimensions

Figure 12.34: PTB Dimensions

12.6.3.3 PCB Stack up

Figure 12.35: PTB Stackup
13. INTERNAL CABLES

13.1 JBOD Connection Bracket

When the Grand Canyon system is used as a JBOD, a bracket is installed with external MiniSAS HD connectors that route into the SCCs. An image of this connector is shown below.

![Figure 13.1: JBOD Mini-SAS Front Panel Connector](image)

This connector will terminate to an internal MiniSAS HD that plugs directly into the SCC board. There will be two cable lengths, one that routes to the front SCC, and one that routes to the rear SCC.
The two different lengths of cable are due to the physical positioning of the SCC boards as shown below in Figure 13.2.

Figure 13.2: JBOD Mini-SAS Cable

13.2 Single Server SAS Cable

When the Grand Canyon is used as a single storage server, the single compute modules need to access all 72 drive slots in the headnode. To do this, there will be an internal x4 SAS cable connecting the two SCCs. In order to make the cabling easier, this cable should have a 90-degree angle on both ends of the cable assembly.

14. EXTERNAL CABLES

14.1 JBOD configuration

The cabling between a Grand Canyon with 1x Barton Springs and its two corresponding Grand Canyon JBODs is shown in FIGURE 14.1. A custom Y-cable is used to connect the single server configuration to the JBODs. Not shown is the internal cabling - one cable in the server connects the two SCCs together (I.3., daisy-chained expander ASICS), and two cables in each JBOD are used to connect the individual SCC cards inside the JBOD to the front panel MiniSAS HD ports.
14.2 Cable Details

Two different lengths of the Y-cable will be used to accommodate the different distances of the two JBOD systems. Details of the cable drawing can be found in the design collateral packages.
15 BMC OVERVIEW

15.1 Introduction

There are a maximum of two BMCs in one Grand Canyon system (depending on the SKU). Each of the BMCs are physically connected to a server and an expander. The firmware running on the BMC is OpenBMC; the source code is available at https://github.com/Meta/openbmc.

Refer to the “Grand Canyon OpenBMC Specification” for details about the OpenBMC firmware interface, utilities and guidelines. At a high level, the BMC should support the following functions:

- Front Panel
 - OCP Debug Card
 - LEDs
- Power Control
- Remote Console
- IPMI FRUID
- Sensor Information
- Firmware Information/Update
 - Server card Firmware Update
 - Expander Firmware Recovery
- Log Information
- Fan Speed Control
- Enclosure Management
 - Enclosure Information
 - HDD status
 - Enclosure Error Code

15.2 Front Panel

The front panel has LEDs, buttons and interfaces that can be used to interact with the system. The functions of these LEDs and buttons has been explained earlier in this specification.

15.2.1 OCP Debug Card

Grand Canyon front panel USB ports support the use of the OCP LCD debug card and all of its features. Please refer to the OCP LCD debug card specification for more details.

15.3 Power Control

The BMC is responsible to control power to all the components of the system. In addition to controlling power to the various components, the BMC also provides a mechanism via console for a user to control
power to the server module or to the entire subsystem, including itself. Note that turning off power to the server also turns off power to the PCIe endpoints present in the system that are connected to that server, to adhere to PCIe Card Electro-Mechanical (CEM) specifications. The table below shows the details on the power control options for the server:

<table>
<thead>
<tr>
<th>Index</th>
<th>BMC</th>
<th>Host(S5)</th>
<th>BS (Host (S0)+BIC)</th>
<th>SCC</th>
<th>NIC</th>
<th>E1.S IOCM</th>
<th>HDD</th>
<th>SLED (UIC+BS+SCC+HDD+NIC+E1S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Not support</td>
<td>[Ctrl 2-1]</td>
<td>[Ctrl 3-1]</td>
<td>[Ctrl 4-1]</td>
<td>Not support</td>
<td>[Ctrl 7-1]</td>
<td>Not support</td>
</tr>
<tr>
<td>Power-on remote</td>
<td>2</td>
<td>Not support</td>
<td>[Ctrl 2-2]</td>
<td>Not support</td>
<td>Not support</td>
<td>Not support</td>
<td>[Ctrl 2-3]</td>
<td>Not support</td>
</tr>
<tr>
<td>Power-off remote</td>
<td>3</td>
<td>Not support</td>
<td>[Ctrl 2-3]</td>
<td>[Ctrl 3-3]</td>
<td>[Ctrl 4-3]</td>
<td>Not support</td>
<td>[Ctrl 7-3]</td>
<td>Not support</td>
</tr>
<tr>
<td>Power-off local</td>
<td>4</td>
<td>Not support</td>
<td>[Ctrl 2-4]</td>
<td>Not support</td>
<td>Not support</td>
<td>Not support</td>
<td>[Ctrl 7-4]</td>
<td>Not support</td>
</tr>
<tr>
<td>Reset remote</td>
<td>5</td>
<td>Not support</td>
<td>[Ctrl 1-5]</td>
<td>[Ctrl 2-5]</td>
<td>[Ctrl 3-5]</td>
<td>Not support</td>
<td>[Ctrl 2-5]</td>
<td>Not support</td>
</tr>
<tr>
<td>Reset local</td>
<td>6</td>
<td>Not support</td>
<td>[Ctrl 2-6]</td>
<td>Not support</td>
<td>Not support</td>
<td>Not support</td>
<td>Not support</td>
<td>Not support</td>
</tr>
</tbody>
</table>

For the supported portions:

1. BMC
 - [Ctrl 1-5] reset remote
 - # reboot
2. Host (S5)
 - [Ctrl 2-1] power-on remote
 - # power-util server on
 - [Ctrl 2-2] power-on local
 - Press the power button on debug card
 - [Ctrl 2-3] power-off remote
 - # power-util server off
 - [Ctrl 2-4] power-off local
 - Press the power button on debug card
 - [Ctrl 2-5] reset remote
 - # power-util server reset
 - [Ctrl 2-6] reset local
 - Press the reset button on debug card
3. BS (Host (S0) + BIC)
[Ctrl 3-1] power-on remote
 # power-util server 12V-on
 (power on stand-by only, but if the power policy is 'on' or 'lps' with the last power state is 'on', will continue to power on Host OS)

[Ctrl 3-3] power-off remote
 # power-util server 12V-off
 (power off both standby and normal)

[Ctrl 3-5] reset remote
 # power-util server 12V-cycle

(4) SCC
[Ctrl 4-1] power-on remote
 # gpioci -c aspeed-gpio -s SCC_STBY_PWR_EN set-value 1
[Ctrl 4-3] power-off remote
 # gpioci -c aspeed-gpio -s SCC_STBY_PWR_EN set-value 0
[Ctrl 4-5] reset remote
 # gpioci -c aspeed-gpio -s BMC_RST_BTN_N_R set-value 0
 # sleep 1
 # gpioci -c aspeed-gpio -s BMC_RST_BTN_N_R set-value 1

(5) NIC
[Ctrl 5-1] power-on remote
 # gpioci -c aspeed-gpio -s BMC_NIC_FULL_PWR_EN_R 1
[Ctrl 5-3] power-off remote
 # gpioci -c aspeed-gpio -s BMC_NIC_FULL_PWR_EN_R 0

(7) HDD
[Ctrl 7-1] power-on remote
 From host:
 # fbjbod hdd --hdd-on $hdd_slot /dev/sgX ($hdd_slot: 0~35)
[Ctrl 7-3] power-off remote
 From host:
 # fbjbod hdd --hdd-off $hdd_slot /dev/sgX ($hdd_slot: 0~35)

(8) SLED (UIC+BS+SCC+HDD+NIC+E1S)
[Ctrl 8-2] power-on local
 Press the power button on UIC
[Ctrl 8-4] power-off local
 Press the power button on UIC
[Ctrl 8-5] reset remote
 # power-util sled-cycle
15.4 Remote Console

The BMC can provide access to the Server remote console which is commonly known as Serial Over LAN (SOL). There can be multiple sessions connected to the Server console. It also buffers the console history of the server.

15.5 IPMI FRUID

The BMC allows the user to read and write the FRUID information to all the components of the system. FRUID information can vary from manufacturer name, manufacturing date, serial number, part number and sometimes to custom fields to differentiate hardware also. Each PCBA in the system is a FRU and has its own FRUID and associated identification data that BMC can access and write also. Here is the list of the FRUs whose information can be fetched by the BMC.

The utility ‘fruid-util’ can be used to read/write/modify the FRUID information of each board. Support to modify individual fields in FRUID using “fruid-util <FRU> --modify --<field> <path to binary>”.

--dump dumps the FRU information raw data of a particular board into a file mentioned in the command.

--write flash new FRU image file into the eeprom of the board.

--modify modifies the FRU contents and stores it in another FRU image file. It only modifies the FRU image file. The user should execute ‘--write’ command to write the new FRU image to eeprom if necessary.
FRU ID mapping table:

<table>
<thead>
<tr>
<th>FRU ID</th>
<th>Board Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All</td>
</tr>
<tr>
<td>1</td>
<td>Server</td>
</tr>
<tr>
<td>2</td>
<td>UIC</td>
</tr>
<tr>
<td>3</td>
<td>DPB</td>
</tr>
<tr>
<td>4</td>
<td>SCC</td>
</tr>
<tr>
<td>5</td>
<td>NIC</td>
</tr>
<tr>
<td>6</td>
<td>E1S_IOCM</td>
</tr>
</tbody>
</table>

15.6 Sensor Information

There are several temperature, voltage, power sensors throughout the system that are read and monitored by the BMC. The BMC can read the sensor values from the server, DPB, IOCM, SCC and NIC. In addition to this, the BMC constantly monitors the sensors on the IOM, NIC and Server every two seconds to look for any anomalies in the system.

15.7 Firmware Information/Update

The BMC has the mechanism to read the current firmware version and push firmware updates when available to the critical components in the system. The BMC is able to read the version and update the firmware of the following components:

- BIOS
- ME
- CPLD
- Bridge-IC
- Bridge-IC Boot loader
• BMC itself
• Expander firmware

15.8 Log Information

The BMC provides logs which refer to the various errors and events that happened on the system. In concept, this is similar to IPMI’s System Event Log (SEL). These logs are stored in persistent memory.

15.9 Fan Speed Control

The Fan Speed Control (FSC) is designed based on the system design, ambient temperature and altitude (environment variations), and desired margin for each component in the system from its allowable maximum temperature. Based on the various temperature sensors in the system, the BMC sets the PWM for the fans. The initial default fan speed (PWM) is set to 50% duty cycle.

15.10 Enclosure Management

The utility ‘enclosure-util’ provides the enclosure information, HDD status, flash status, and enclosure error codes.

15.10.1 HDDs Status

Users will get the 4 bytes response data when sending the command with “--hdd-status” option. The array device status element is below:

15.10.2 Error Code

The --error option will inform users whether there is an error in the system. The error code depends on whether the error is monitored from Expander or BMC, thus the error code is defined by both Expander and BMC.

Currently, we inherit the definition of Expander Error Code from Bryce Canyon.
Expander Error Code Definition (GrandCanyon_ErrorCode_EventLogList_0501):

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No error</td>
<td>50</td>
<td>HDD20 fault request</td>
</tr>
<tr>
<td>1</td>
<td>I2C bus 1 crash</td>
<td>51</td>
<td>HDD21 fault request</td>
</tr>
<tr>
<td>2</td>
<td>I2C bus 2 crash</td>
<td>52</td>
<td>HDD22 fault request</td>
</tr>
<tr>
<td>3</td>
<td>I2C bus 3 crash</td>
<td>53</td>
<td>HDD23 fault request</td>
</tr>
<tr>
<td>4</td>
<td>I2C bus 4 crash</td>
<td>54</td>
<td>HDD24 fault request</td>
</tr>
<tr>
<td>5</td>
<td>I2C bus 5 crash</td>
<td>55</td>
<td>HDD25 fault request</td>
</tr>
<tr>
<td>6</td>
<td>I2C bus 6 crash</td>
<td>56</td>
<td>HDD26 fault request</td>
</tr>
<tr>
<td>7</td>
<td>I2C bus 7 crash</td>
<td>57</td>
<td>HDD27 fault request</td>
</tr>
<tr>
<td>8</td>
<td>I2C bus 0 crash</td>
<td>58</td>
<td>HDD28 fault request</td>
</tr>
<tr>
<td>9</td>
<td>IOC HeartBeat loss</td>
<td>59</td>
<td>HDD29 fault request</td>
</tr>
<tr>
<td>10</td>
<td>Reserved</td>
<td>60</td>
<td>HDD30 fault request</td>
</tr>
<tr>
<td>11</td>
<td>SCC voltage critical</td>
<td>61</td>
<td>HDD31 fault request</td>
</tr>
<tr>
<td>12</td>
<td>SCC_HSC voltage critical</td>
<td>62</td>
<td>HDD32 fault request</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Value</td>
<td>Comment</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-------</td>
<td>----------------------</td>
</tr>
<tr>
<td>13</td>
<td>DPB voltage critical</td>
<td>63</td>
<td>HDD33 fault request</td>
</tr>
<tr>
<td>14</td>
<td>DPB_HSC voltage critical</td>
<td>64</td>
<td>HDD34 fault request</td>
</tr>
<tr>
<td>15</td>
<td>PTB_HSC_CLIP voltage critical</td>
<td>65</td>
<td>HDD35 fault request</td>
</tr>
<tr>
<td>16</td>
<td>HDD X voltage critical</td>
<td>66</td>
<td>HDD X fault sensed</td>
</tr>
<tr>
<td>17</td>
<td>SCC current critical</td>
<td>67</td>
<td>Reserved</td>
</tr>
<tr>
<td>18</td>
<td>DPB current critical</td>
<td>68</td>
<td>Reserved</td>
</tr>
<tr>
<td>19</td>
<td>PTB_HSC_CLIP current critical</td>
<td>69</td>
<td>Reserved</td>
</tr>
<tr>
<td>20</td>
<td>Reserved</td>
<td>70</td>
<td>Internal Mini-SAS Link Loss</td>
</tr>
<tr>
<td>21</td>
<td>SCC_Expander_Temp critical</td>
<td>71</td>
<td>Internal SAS Link Loss</td>
</tr>
<tr>
<td>22</td>
<td>Reserved</td>
<td>72</td>
<td>SCC I2C device loss</td>
</tr>
<tr>
<td>23</td>
<td>SCC_Temp1 critical</td>
<td>73</td>
<td>DPB I2C device loss</td>
</tr>
<tr>
<td>24</td>
<td>SCC_Temp2 critical</td>
<td>74</td>
<td>PTB I2C device loss</td>
</tr>
<tr>
<td>25</td>
<td>DPB_INLET_Temp1 critical</td>
<td>75</td>
<td>UIC I2C device loss</td>
</tr>
<tr>
<td>26</td>
<td>DPB_INLET_Temp2 critical</td>
<td>76</td>
<td>Reserved</td>
</tr>
<tr>
<td>27</td>
<td>DPB_OUTLET_Temp critical</td>
<td>77</td>
<td>Fan 0 front fault</td>
</tr>
<tr>
<td>28</td>
<td>HDD X SMART temp. critical</td>
<td>78</td>
<td>Fan 0 rear fault</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>29</td>
<td>UIC_Temp critical</td>
<td>79</td>
<td>Fan 1 front fault</td>
</tr>
<tr>
<td>30</td>
<td>HDD0 fault request</td>
<td>80</td>
<td>Fan 1 rear fault</td>
</tr>
<tr>
<td>31</td>
<td>HDD1 fault request</td>
<td>81</td>
<td>Fan 2 front fault</td>
</tr>
<tr>
<td>32</td>
<td>HDD2 fault request</td>
<td>82</td>
<td>Fan 2 rear fault</td>
</tr>
<tr>
<td>33</td>
<td>HDD3 fault request</td>
<td>83</td>
<td>Fan 3 front fault</td>
</tr>
<tr>
<td>34</td>
<td>HDD4 fault request</td>
<td>84</td>
<td>Fan 3 rear fault</td>
</tr>
<tr>
<td>35</td>
<td>HDD5 fault request</td>
<td>85</td>
<td>Reserved</td>
</tr>
<tr>
<td>36</td>
<td>HDD6 fault request</td>
<td>86</td>
<td>Reserved</td>
</tr>
<tr>
<td>37</td>
<td>HDD7 fault request</td>
<td>87</td>
<td>Reserved</td>
</tr>
<tr>
<td>38</td>
<td>HDD8 fault request</td>
<td>88</td>
<td>Drawer Pull out</td>
</tr>
<tr>
<td>39</td>
<td>HDD9 fault request</td>
<td>89</td>
<td>Peer SCC Plug out</td>
</tr>
<tr>
<td>40</td>
<td>HDD10 fault request</td>
<td>90</td>
<td>UICA Plug out</td>
</tr>
<tr>
<td>41</td>
<td>HDD11 fault request</td>
<td>91</td>
<td>UICB Plug out</td>
</tr>
<tr>
<td>42</td>
<td>HDD12 fault request</td>
<td>92</td>
<td>Fan 0 Plug out</td>
</tr>
<tr>
<td>43</td>
<td>HDD13 fault request</td>
<td>93</td>
<td>Fan 1 Plug out</td>
</tr>
<tr>
<td>44</td>
<td>HDD14 fault request</td>
<td>94</td>
<td>Fan 2 Plug out</td>
</tr>
<tr>
<td>45</td>
<td>HDD15 fault request</td>
<td>95</td>
<td>Fan 3 Plug out</td>
</tr>
<tr>
<td>----</td>
<td>---------------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td>46</td>
<td>HDD16 fault request</td>
<td>96</td>
<td>Reserved</td>
</tr>
<tr>
<td>47</td>
<td>HDD17 fault request</td>
<td>97</td>
<td>Reserved</td>
</tr>
<tr>
<td>48</td>
<td>HDD18 fault request</td>
<td>98</td>
<td>Reserved</td>
</tr>
<tr>
<td>49</td>
<td>HDD19 fault request</td>
<td>99</td>
<td>H/W Configuration/Type Not Match</td>
</tr>
</tbody>
</table>

BMC

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xCE</td>
<td>BMC CPU utilization exceeded</td>
<td>0xEF</td>
<td>I2C bus 8 hang</td>
</tr>
<tr>
<td>0xCF</td>
<td>BMC Memory utilization exceeded</td>
<td>0xF0</td>
<td>I2C bus 9 hang</td>
</tr>
<tr>
<td>0xE0</td>
<td>ECC Recoverable Error</td>
<td>0xF1</td>
<td>I2C bus 10 hang</td>
</tr>
<tr>
<td>0xE1</td>
<td>ECC Unrecoverable Error</td>
<td>0xF2</td>
<td>I2C bus 11 hang</td>
</tr>
<tr>
<td>0xE2</td>
<td>Barton Springs Missing</td>
<td>0xF3</td>
<td>I2C bus 12 hang</td>
</tr>
<tr>
<td>0xE3</td>
<td>SCC Missing</td>
<td>0xF4</td>
<td>I2C bus 13 hang</td>
</tr>
<tr>
<td>0xE4</td>
<td>NIC Missing</td>
<td>0xF5</td>
<td>I2C bus 14 hang</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------</td>
<td>-------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>0xE5</td>
<td>E1.S Missing</td>
<td>0xF6</td>
<td>I2C bus 15 hang</td>
</tr>
<tr>
<td>0xE6</td>
<td>IOC Module Missing</td>
<td>0xF7</td>
<td>Server health is bad</td>
</tr>
<tr>
<td>0xE7</td>
<td>I2C bus 0 hang</td>
<td>0xF8</td>
<td>UIC health is bad</td>
</tr>
<tr>
<td>0xE8</td>
<td>I2C bus 1 hang</td>
<td>0xF9</td>
<td>DPB health is bad</td>
</tr>
<tr>
<td>0xE9</td>
<td>I2C bus 2 hang</td>
<td>0xFA</td>
<td>SCC health is bad</td>
</tr>
<tr>
<td>0xEA</td>
<td>I2C bus 3 hang</td>
<td>0xFB</td>
<td>NIC health is bad</td>
</tr>
<tr>
<td>0xEB</td>
<td>I2C bus 4 hang</td>
<td>0xFC</td>
<td>BMC remote heartbeat health is abnormal</td>
</tr>
<tr>
<td>0xEC</td>
<td>I2C bus 5 hang</td>
<td>0xFD</td>
<td>SCC local heartbeat health is abnormal</td>
</tr>
<tr>
<td>0xED</td>
<td>I2C bus 6 hang</td>
<td>0xFE</td>
<td>SCC remote heartbeat health is abnormal</td>
</tr>
<tr>
<td>0xEE</td>
<td>I2C bus 7 hang</td>
<td>0xFF</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
BMC error code definition:
For the error codes from 0xE7 to 0xF6, GC won't enable I2C bus monitoring until the unified bus status reporting solution is defined.

15.11 Event List Along With The Error Code

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>ERROR CODE</th>
<th>CRITERIA</th>
<th>LOG STRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRU EEPROM is empty</td>
<td>N/A</td>
<td>If all of the data header is 0xff in EEPROM</td>
<td>Critical-FRU header <FRU_BIN_FILE> is empty</td>
</tr>
<tr>
<td>New FRU file's checksum is invalid</td>
<td>N/A</td>
<td>New FRU file's checksum is invalid</td>
<td>Critical-New FRU data checksum is invalid</td>
</tr>
<tr>
<td>BMC CPU utilization exceeded</td>
<td>0xCE</td>
<td>If BMC CPU utilization exceeds the threshold.</td>
<td>Warning-ASSERT: BMC CPU utilization (<CURRENT_CPU>%)* exceeds the threshold (<CPU_THRESHOLD>%). Warning-DEASSERT: BMC CPU utilization (<CURRENT_CPU>%)* is under the threshold (<CPU_THRESHOLD>%).</td>
</tr>
<tr>
<td>BMC Memory utilization exceeded</td>
<td>0xCF</td>
<td>If BMC Memory utilization exceeds the threshold.</td>
<td>Critical-ASSERT: BMC Memory utilization (<CURRENT_MEM>%)* exceeds the threshold (<MEM_THRESHOLD>%). Critical-DEASSERT: BMC Memory utilization (<CURRENT_MEM>%)* is under the threshold (<MEM_THRESHOLD>%).</td>
</tr>
<tr>
<td>ECC Recoverable Error</td>
<td>0xE0</td>
<td>If ECC Recoverable Error Counter over thresholds (0%, 50%, and 90%).</td>
<td>ECC Recoverable Error occurred CC_THRESHOLD>% Counter = <MCR5C></td>
</tr>
<tr>
<td>Event Description</td>
<td>Code</td>
<td>Details</td>
<td>Status</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>ECC Unrecoverable Error</td>
<td>0xE1</td>
<td>If ECC Unrecoverable Error Counter over thresholds (0%, 50%, and 90%).</td>
<td>Critical-ECC Unrecoverable Error occurred (over <ECC_THRESHOLD>%). Counter = <MCR50> Address of first unrecoverable ECC error = <MCR58></td>
</tr>
<tr>
<td>Barton Springs Missing</td>
<td>0xE2</td>
<td>Check Barton Springs is present or not via IO expander P00.</td>
<td>Critical-ASSERT: server missing Critical-DEASSERT: server missing</td>
</tr>
<tr>
<td>SCC Missing</td>
<td>0xE3</td>
<td>Check if SCC is present or not via IO expander. (should confirm the GPIO number) Type 5: UICA check P06, UICB check P07 Type 7: check P06 and P07</td>
<td>Critical-ASSERT: scc missing Critical-DEASSERT: scc missing</td>
</tr>
<tr>
<td>NIC Missing</td>
<td>0xE4</td>
<td>Check Mezz card is present or not via BMC GPIOAA1. (should confirm the GPIO number)</td>
<td>Critical-ASSERT: nic missing Critical-DEASSERT: nic missing</td>
</tr>
<tr>
<td>IOC Module Missing</td>
<td>0xE6</td>
<td>Check E1.S is present or not via IO expander P16 and P17.</td>
<td>Critical-ASSERT: iocm missing Critical-DEASSERT: iocm missing</td>
</tr>
<tr>
<td>I2C bus 0 hang</td>
<td>0xE7</td>
<td>I2C bus crash/I2C driver hang</td>
<td>For the error codes from 0xE7 to 0xF6, GC won't enable I2C bus monitoring until the unified bus status reporting solution is defined. Critical-ASSERT: ASSERT: I2C(<BUS_ID>) bus is locked</td>
</tr>
<tr>
<td>I2C bus 1 hang</td>
<td>0xE8</td>
<td>I2C bus crash/I2C driver hang</td>
<td>For the error codes from 0xE7 to 0xF6, GC won't enable I2C bus monitoring until the unified bus status reporting solution is defined. Critical-ASSERT: ASSERT: I2C(<BUS_ID>) bus is locked</td>
</tr>
<tr>
<td>I2C bus 2 hang</td>
<td>0xE9</td>
<td>I2C bus crash/I2C driver hang</td>
<td>For the error codes from 0xE7 to 0xF6, GC won't enable I2C bus monitoring until the unified bus status reporting solution is defined. Critical-ASSERT: ASSERT: I2C(<BUS_ID>) bus is locked</td>
</tr>
</tbody>
</table>
| I2C bus 3 hang | 0xEA | I2C bus crash/I2C driver hang
| I2C bus 4 hang | 0xEB | I2C bus crash/I2C driver hang
| I2C bus 5 hang | 0xEC | I2C bus crash/I2C driver hang
| I2C bus 6 hang | 0xED | I2C bus crash/I2C driver hang
| I2C bus 7 hang | 0xEE | I2C bus crash/I2C driver hang
| I2C bus 8 hang | 0xEF | I2C bus crash/I2C driver hang
| I2C bus 9 hang | 0xF0 | I2C bus crash/I2C driver hang
| I2C bus 10 hang | 0xF1 | I2C bus crash/I2C driver hang
| I2C bus 11 hang | 0xF2 | I2C bus crash/I2C driver hang
| I2C bus 12 hang | 0xF3 | I2C bus crash/I2C driver hang
| I2C bus 13 hang | 0xF4 | I2C bus crash/I2C driver hang
| I2C bus 14 hang | 0xF5 | I2C bus crash/I2C driver hang
| I2C bus 15 hang | 0xF6 | I2C bus crash/I2C driver hang
| Server health | 0xF7 | Open Server health file failed or Server status is abnormal

(Master Lock or Slave Clock Stretch). Recovery error. (I2C bus index base 0)
Critical-ASSERT: I2C(<BUS_ID>) bus is locked (Master Lock or Slave Clock Stretch). Recovery timed out. (I2C bus index base 0)
Critical-ASSERT: I2C(<BUS_ID>) Slave is dead (SDAs keep low). Bus recovery error. (I2C bus index base 0)
Critical-ASSERT: I2C(<BUS_ID>) Slave is dead (SDA keeps low). Bus recovery timed out. (I2C bus index base 0)
Critical-ASSERT: I2C(<BUS_ID>) Undefined case. (I2C bus index base 0)
Critical-DEASSERT: I2C(<BUS_ID>) Bus recovered. (I2C bus index base 0)
Critical-I2C(<BUS_ID>) bus had been locked (Master Lock or Slave Clock Stretch) and has been recovered successfully. (I2C bus index base 0)
Critical-I2C(<BUS_ID>) Slave was dead and bus has been recovered successfully. (I2C bus index base 0)
<table>
<thead>
<tr>
<th>Health Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIC health</td>
<td>0xF8</td>
<td>Open UIC health file failed or UIC status is abnormal</td>
</tr>
<tr>
<td>DPB health</td>
<td>0xF9</td>
<td>Open DPB health file failed or DPB status is abnormal</td>
</tr>
<tr>
<td>SCC health</td>
<td>0xFA</td>
<td>Open SCC health file failed or SCC status is abnormal</td>
</tr>
<tr>
<td>NIC health</td>
<td>0xFB</td>
<td>Open NIC health file failed or NIC status is abnormal</td>
</tr>
<tr>
<td>BMC remote heartbeat health</td>
<td>0xFC</td>
<td>Type 5 only. BMC remote heartbeat is lost continuous 3 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical-BMC remote heartbeat is abnormal</td>
</tr>
<tr>
<td>SCC local heartbeat health</td>
<td>0xFD</td>
<td>SCC local heartbeat is lost continuous 3 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical-SCC local heartbeat is abnormal</td>
</tr>
<tr>
<td>SCC remote heartbeat health</td>
<td>0xFE</td>
<td>Type 7 only. SCC remote heartbeat is lost continuous 3 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Critical-SCC remote heartbeat is abnormal</td>
</tr>
</tbody>
</table>
15.12 IPMI Command Support List

<table>
<thead>
<tr>
<th>COMMAND NAME</th>
<th>NETFN</th>
<th>CODE</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis (0x00)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHASSIS_GET_STATUS</td>
<td>0x00</td>
<td>0x01</td>
<td>Ref IPMI spec 28.2 (only support get power policy and current status)</td>
</tr>
<tr>
<td>CHASSIS_SET_POWER_RESTORE_POLICY</td>
<td>0x00</td>
<td>0x06</td>
<td>Ref IPMI spec 28.8</td>
</tr>
<tr>
<td>Sensor/Event (0x04)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENSOR_PLAT_EVENT_MSG</td>
<td>0x04</td>
<td>0x02</td>
<td>Ref IPMI spec 29.3</td>
</tr>
<tr>
<td>App (0x06)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APP_GET_DEVICE_ID</td>
<td>0x06</td>
<td>0x01</td>
<td>Ref IPMI spec 20.1</td>
</tr>
<tr>
<td>APP_COLD_RESET</td>
<td>0x06</td>
<td>0x02</td>
<td>Ref IPMI spec 20.2</td>
</tr>
<tr>
<td>APP_GET_SELFTEST_RESULTS</td>
<td>0x06</td>
<td>0x04</td>
<td>Ref IPMI spec 20.4</td>
</tr>
<tr>
<td>APP_MANUFACTURING_TEST_ON</td>
<td>0x06</td>
<td>0x05</td>
<td>Ref IPMI spec 20.5 (send “sled-cycle”ASCII string)</td>
</tr>
<tr>
<td>APP_GET_DEVICE_GUID</td>
<td>0x06</td>
<td>0x08</td>
<td>Ref IPMI spec 20.8</td>
</tr>
<tr>
<td>APP_RESET_WDT</td>
<td>0x06</td>
<td>0x22</td>
<td>Ref IPMI spec 27.5</td>
</tr>
<tr>
<td>APP_SET_WDT</td>
<td>0x06</td>
<td>0x24</td>
<td>Ref IPMI spec 27.6</td>
</tr>
<tr>
<td>APP_GET_WDT</td>
<td>0x06</td>
<td>0x25</td>
<td>Ref IPMI spec 27.7</td>
</tr>
<tr>
<td>Function</td>
<td>Code</td>
<td>Value</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>APP_SET_GLOBAL_ENABLES</td>
<td>0x06</td>
<td>0x2E</td>
<td>Ref IPMI spec 22.1</td>
</tr>
<tr>
<td>APP_GET_GLOBAL_ENABLES</td>
<td>0x06</td>
<td>0x2F</td>
<td>Ref IPMI spec 22.2</td>
</tr>
<tr>
<td>APP_CLEAR_MESSAGE_FLAGS</td>
<td>0x06</td>
<td>0x30</td>
<td>Ref IPMI spec 22.3</td>
</tr>
<tr>
<td>APP_GET_SYSTEM_GUID</td>
<td>0x06</td>
<td>0x37</td>
<td>Ref IPMI spec 22.14</td>
</tr>
<tr>
<td>APP_SET_SYS_INFO_PARAMS</td>
<td>0x06</td>
<td>0x58</td>
<td>Ref IPMI spec 22.14a</td>
</tr>
<tr>
<td>APP_GET_SYS_INFO_PARAMS</td>
<td>0x06</td>
<td>0x59</td>
<td>Ref IPMI spec 22.14b</td>
</tr>
<tr>
<td>Storage (0x0A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STORAGE_GET_FRUID_INFO</td>
<td>0x0A</td>
<td>0x10</td>
<td>Ref IPMI spec 34.1</td>
</tr>
<tr>
<td>STORAGE_READ_FRUID_DATA</td>
<td>0x0A</td>
<td>0x11</td>
<td>Ref IPMI spec 34.2</td>
</tr>
<tr>
<td>STORAGE_GET_SDR_INFO</td>
<td>0x0A</td>
<td>0x20</td>
<td>Ref IPMI spec 33.9</td>
</tr>
<tr>
<td>STORAGE_RSV_SDR</td>
<td>0x0A</td>
<td>0x22</td>
<td>Ref IPMI spec 33.11</td>
</tr>
<tr>
<td>STORAGE_GET_SDR</td>
<td>0x0A</td>
<td>0x23</td>
<td>Ref IPMI spec 33.12</td>
</tr>
<tr>
<td>STORAGE_GET_SEL_INFO</td>
<td>0x0A</td>
<td>0x40</td>
<td>Ref IPMI spec 31.2</td>
</tr>
<tr>
<td>STORAGE_RSV_SEL</td>
<td>0x0A</td>
<td>0x42</td>
<td>Ref IPMI spec 31.4</td>
</tr>
<tr>
<td>STORAGE_GET_SEL</td>
<td>0x0A</td>
<td>0x43</td>
<td>Ref IPMI spec 31.5</td>
</tr>
<tr>
<td>STORAGE_ADD_SEL</td>
<td>0x0A</td>
<td>0x44</td>
<td>Ref IPMI spec 31.6</td>
</tr>
<tr>
<td>STORAGE_CLR_SEL</td>
<td>0x0A</td>
<td>0x47</td>
<td>Ref IPMI spec 31.9</td>
</tr>
<tr>
<td>STORAGE_GET_SEL_TIME</td>
<td>0x0A</td>
<td>0x48</td>
<td>Ref IPMI spec 31.10</td>
</tr>
<tr>
<td>Command</td>
<td>Code</td>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>STORAGE_GET_SEL_UTC</td>
<td>0xA</td>
<td>0x5C</td>
<td>Ref IPMI spec 31.11a</td>
</tr>
<tr>
<td>Transport (0x0C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSPORT_SET_LAN_CONFIG</td>
<td>0x0C</td>
<td>0x01</td>
<td>Ref IPMI spec 23.1</td>
</tr>
<tr>
<td>TRANSPORT_GET_LAN_CONFIG</td>
<td>0x0C</td>
<td>0x02</td>
<td>Ref IPMI spec 23.2; IPv6 parameter: 197</td>
</tr>
<tr>
<td>TRANSPORT_GET_SOL_CONFIG</td>
<td>0x0C</td>
<td>0x22</td>
<td>Ref IPMI spec 26.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Code</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEM_BYPASS_CMD</td>
<td>0x30</td>
<td>0x34</td>
<td>Request:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte 1 - Bypass Command</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Target</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00h: Bridge-IC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01h: ME</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>02h: reserved and not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>03h: NCSI</td>
</tr>
<tr>
<td>CMD_OEM_GET_SENSOR_REAL_READING</td>
<td>0x30</td>
<td>0x20</td>
<td>Request:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte 1 - FRU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte 2 - sensor number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Response:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte 1 - Completion Code</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte 2~3 - sensor reading in decimal integer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte 4 - sensor reading in decimal point</td>
</tr>
<tr>
<td>Function:</td>
<td>OEM_SET_BOOT_ORDER</td>
<td>0x30</td>
<td>0x52</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
<td>------</td>
<td>------</td>
</tr>
</tbody>
</table>

Request:
- **Byte 1 - Boot Mode**
 - Bit 0: 0 : Legacy, 1 : UEFI
 - Bit 1: CMOS Clear
 (Optional, BIOS implementation dependent)
 - Bit 2: Force Boot into BIOS Setup
 (Optional, BIOS implementation dependent)
 - Bit 6:3 - reserved
 - Bit 7 - Boot Flags Valid

Response:
- **Byte 1 - Completion Code**
- **Byte 2 -**
 - Standard cmd: ref IPMI spec
 - OEM cmd: ref corresponding IPMI command
 - NCSI cmd: ref NCSI spec
<table>
<thead>
<tr>
<th>Boot Sequence</th>
<th></th>
<th>Byte 2 ~ Byte 6 - Boot Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 2:0</td>
<td>000b: USB Device</td>
<td>001b: Network</td>
</tr>
<tr>
<td>010b: SATA HDD</td>
<td>011b: SATA-CDROM</td>
<td>100b: Other Removable</td>
</tr>
<tr>
<td>Device</td>
<td>Device</td>
<td>Device</td>
</tr>
<tr>
<td>Bit 7:3</td>
<td>reserve for boot device special request</td>
<td>If Bit 2:0 is 001b (Network), Bit3 is IPv4/IPv6 order</td>
</tr>
<tr>
<td>Bit3 = 0b: IPv4 first</td>
<td>Bit3 = 1b: IPv6 first</td>
<td>Bit3 = 0b: IPv4 first</td>
</tr>
<tr>
<td>Bit3 = 1b: IPv6 first</td>
<td>Response</td>
<td>Response</td>
</tr>
<tr>
<td>Byte 1 - Completion Code</td>
<td>Byte 1 - Completion Code</td>
<td>Byte 1 - Completion Code</td>
</tr>
</tbody>
</table>

OEM_GET_BOOT_ORDER	0x30	0x53
<p>| Request | None | Request |
| Response | None | Response |
| Byte 1 - Completion Code | None | Byte 1 - Completion Code |
| Byte 2 - Boot Mode | None | Byte 2 - Boot Mode |
| Bit 0 - 0 : Legacy, 1 : UEFI | None | Bit 0 - 0 : Legacy, 1 : UEFI |
| Bit 1 - CMOS Clear | None | Bit 1 - CMOS Clear |
| (Optional, BIOS implementation dependent) | None | (Optional, BIOS implementation dependent) |
| Bit 2 - Force Boot into BIOS Setup | None | Bit 2 - Force Boot into BIOS Setup |
| (Optional, BIOS implementation dependent) | None | (Optional, BIOS implementation dependent) |
| Bit 6:3 - reserved | None | Bit 6:3 - reserved |
| Bit 7 - Boot Flags Valid | None | Bit 7 - Boot Flags Valid |
| Byte 3 ~ Byte 7 - Boot Sequence | None | Byte 3 ~ Byte 7 - Boot Sequence |
| Bit 2:0 - Boot Device ID | None | Bit 2:0 - Boot Device ID |</p>
<table>
<thead>
<tr>
<th>Function</th>
<th>Request</th>
<th>Response</th>
<th>Description</th>
</tr>
</thead>
</table>
| OMEM_GET_PLLT_INFO | 0x30 | 0x7E | Request: None
| | | | Response:
| | | | Byte 1 - Completion Code
| | | | Byte 2 - Platform Configuration Number
| | | | 91h: Grand Canyon Type 5A
| | | | 99h: Grand Canyon Type 5B
| | | | A1h: Grand Canyon Type 7 |
| OMEM_SET_PPR | 0x30 | 0x90 | DDR4 PPR/sPPR support; Need to repair DDR4 memory by using extra row as part of repair flow
| | | | Request:
| | | | Byte 1 - PPR Command Selector
| | | | Byte 2..N - Configuration parameter data per table below |
| | | | Response:
| | | | Byte 1 - Completion Code
<p>| | | | Command: PPR Action Selector: 0x01 |</p>
<table>
<thead>
<tr>
<th>Byte 1 - Enable or disable PPR function in next host system reboot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit[7]: 0 for disable; 1 for enable</td>
</tr>
<tr>
<td>Bit[6..0]: 01h for Soft PPR; 02h for Hard PPR</td>
</tr>
<tr>
<td>If there is no candidate row for repair:</td>
</tr>
<tr>
<td>When get, response data is zero for PPR function</td>
</tr>
<tr>
<td>When Set, response completion code: D5h for parameter not support in current state</td>
</tr>
</tbody>
</table>

Command: PPR Candidate Row Count
Selector: 0x2
- Byte1 - PPR Candidate row count, range from 0 to 100
 - 0h - No candidate row

Command: PPR Candidate Row Address
Selector: 0x3
- Byte1 - Set Selector: PPR candidate row index, from 0 to ("PPR Candidate Row Count" - 1).
- Byte 2..7 - PPR candidate row address
 - Byte 2:
 - Bit[7:2] - Reserved
 - Bit[1:0] - Logical Rank
 - Byte 3:
 - Bit[7:5] - Socket Number
 - Bit[4:2] - Channel Number
 - Bit[0:1] - DIMM Number
Open Compute Project • Grand Canyon System Specification

<table>
<thead>
<tr>
<th>Command</th>
<th>Selectors</th>
<th>Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEM_GET_PPR</td>
<td>0x30 0x91</td>
<td>DDR4 PPR/sPPR support; Need to repair DDR4 memory by using extra row as part of repair flow</td>
</tr>
</tbody>
</table>

- **Byte 4**: Device ID
- **Byte 5**:
 - Bit[7:4] - Bank
 - Bit[3:0] - Bank Group
- **Byte 6**: Row (LSB)
- **Byte 7**: Row (MSB)

Command: PPR History Data

Selector: 0x04

- **Byte 1**: Set Selector: PPR history index, from 0 to ("PPR History Count" - 1)
- **Byte 2..17**: PPR history data

Signature: 0xbfeeeefb

- **Byte 6**: Checksum
- **Byte 7..10**: Seconds since Epoch for First PPR Entry
- **Byte 11..14**: Seconds since Epoch for the Most Recent Entry
- **Byte 15**: Number of Successful PPR (LSB)
- **Byte 16**: Number of Successful PPR (MSB)
- **Byte 17**: DIMM ID

Request:

- **Byte 1**: PPR Command Selector
- **Byte 2**: Set Selector. Selects a given set of parameters under a parameter selector value. 00h if parameter does not require a set selector
Response:
 Byte 1 - Completion Code
 Byte 2..N - Configuration parameter data per table below

Command: PPR Action
Selector: 0x01
 Byte 1 - Enable or disable PPR function in next host system reboot
 Bit[7]: 0 for disable; 1 for enable
 Bit[6..0] - 01h for Soft PPR; 02h for Hard PPR

If there is no candidate row for repair:

When get, response data is zero for PPR function

When Set, response completion code: D5h for parameter not support in current state

Command: PPR Candidate Row Count
Selector: 0x2
 Byte 1 - PPR Candidate row count, range from 0 to 100
 0h - No candidate row

Command: PPR Candidate Row Address
Selector: 0x3
 Byte 1 - Set Selector: PPR candidate row index, from 0 to
<table>
<thead>
<tr>
<th>Byte 1: Set Selector: PPR history index, from 0 to (""PPR History Count"" - 1)</th>
<th>Command: PPR History Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 2..17: PPR history data</td>
<td>Selector: 0x04</td>
</tr>
<tr>
<td>Byte 2..5 - PPR Table</td>
<td>Byte1: Set Selector: PPR</td>
</tr>
<tr>
<td>Signature 0xbfeeeefb</td>
<td>history index, from 0 to (""PPR History Count"" - 1)</td>
</tr>
<tr>
<td>Byte 6 - Checksum</td>
<td>Byte 2..17: PPR history data</td>
</tr>
<tr>
<td>Byte 7..10 - Seconds since Epoch for First PPR Entry</td>
<td>Byte 2..5 - PPR Table</td>
</tr>
<tr>
<td>Epoch for the Most Recent Entry</td>
<td>Byte 11..14 - Seconds since</td>
</tr>
<tr>
<td>Byte 15 - Number of Successful PPR (LSB)</td>
<td>Epoch for the Most Recent Entry</td>
</tr>
<tr>
<td>Byte 16 - Number of Successful PPR (MSB)</td>
<td>Byte 15 - Number of</td>
</tr>
<tr>
<td>Byte 17 - DIMM ID"</td>
<td>Successful PPR (MSB)</td>
</tr>
<tr>
<td>Command Code</td>
<td>Request</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| CMD_OEM_GET_USB_CDC_STATUS | 0x30 0xB0 | Request: None
Response:
Byte 1 - Completion Code
Byte 2 - Status
00h: Disable
01h: Enable |
| CMD_OEM_CTRL_USB_CDC | 0x30 0xB1 | Request:
Byte 1 - Status Control
00h: Disable
01h: Enable
Response:
Byte 1 - Completion Code |
| OEM_GET_PCIE_CONFIG | 0x30 0xF4 | Request: None
Response:
Byte 1 - Completion Code
Byte 2 - PCIe Configuration
06h: Type 5
08h: Type 7 |
| OEM_ADD_STRING_SEL | 0x32 0x30 | Request:
Byte 1 - For BMC Reserved
Byte 2 - String Length
Byte 3 ~ Byte N - Event Log String (ASCII)
Response:
Byte 1 - Completion Code |
| OEM_SETUP_EXP_UART_BRIDGING | 0x32 0x40 | Request: None
Route Host UART0 to Expander Debug Port
Response: |
<table>
<thead>
<tr>
<th>Function</th>
<th>Request Code</th>
<th>Response Code</th>
<th>Request Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEM_TEARDOWN_EXP_UART_BRIDGING</td>
<td>0x32</td>
<td>0x41</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Disable UART route of Host UART0 to Expander Debug Port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Response:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte 1 - Completion Code</td>
</tr>
<tr>
<td>OEM_SET_IOC_FW_RECOVERY</td>
<td>0x32</td>
<td>0x42</td>
<td>Byte1 - Component</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00h: SCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01h: IOC Module</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte 2 - Set the IOC Recovery State</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00h: Disable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01h: Enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Response:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte 1 - Completion Code</td>
</tr>
<tr>
<td>OEM_GET_IOC_FW_RECOVERY</td>
<td>0x32</td>
<td>0x43</td>
<td>Byte1 - Component</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00h: SCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01h: IOC Module</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Response:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte 1 - Completion Code</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte 2 - Current Status of IOC Recovery</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00h: Disable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01h: Enable</td>
</tr>
<tr>
<td>OEM_SET_IOC_WWID</td>
<td>0x32</td>
<td>0x50</td>
<td>Byte1 - Component</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01h: IOC Module</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte2 - Byte9 - WWID</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Response:</td>
</tr>
<tr>
<td>Command</td>
<td>Byte 1</td>
<td>Byte 2</td>
<td>Request</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>OEM_GET_IOC_WWID</td>
<td>0x32</td>
<td>0x51</td>
<td>Byte 1 - Component</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00h: SCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte 1 - Component</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte 2 - Byte 9 - WWID</td>
</tr>
<tr>
<td>OEM (0x38)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset BMC from BIC</td>
<td>0x38</td>
<td>0x16</td>
<td>Byte 1 ~ Byte 3 - Manufacturer ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>009C9Ch, LS byte first</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte 1 ~ Byte 3 - Manufacturer ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>009C9Ch, LS byte first</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byte 1 - Completion Code</td>
</tr>
</tbody>
</table>

[AC1]update
15.13 Expander IPMB Command Support List

<table>
<thead>
<tr>
<th>Command Name</th>
<th>NetFn</th>
<th>Code</th>
<th>oBMC Request Data</th>
<th>Expander Response Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEM Get Expander Error Code</td>
<td>0x30</td>
<td>0x11</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Byte 1: Expander error codes 0-7</td>
<td>Return total of 13 bytes with all Expander error code. Please refer to Expander FW Specification for detailed error code description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Byte 2: Expander error codes 8-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Byte 3: Expander error codes 16-23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Byte 4: Expander error codes 24-31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Byte 5: Expander error codes 32-39</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Byte 6: Expander error codes 40-47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Byte 7: Expander error codes 48-55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Byte 8: Expander error codes 56-63</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Byte 9: Expander error codes 64-71</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Byte 10: Expander error codes 72-79</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Byte 11: Expander error codes 80-87</td>
<td></td>
</tr>
<tr>
<td>Get Expander FW Version</td>
<td>0x30</td>
<td>0x12</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte 1</th>
<th>Region 0 (Bootloader) Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 2</td>
<td>Region 0 (Bootloader) Major Version</td>
</tr>
<tr>
<td>Byte 3</td>
<td>Region 0 (Bootloader) Minor Version</td>
</tr>
<tr>
<td>Byte 4</td>
<td>Region 0 (Bootloader) Unit Version</td>
</tr>
<tr>
<td>Byte 5</td>
<td>Region 0 (Bootloader) Dev Version</td>
</tr>
<tr>
<td>Byte 6</td>
<td>Region 1 (Firmware) Status</td>
</tr>
<tr>
<td>Byte 7</td>
<td>Region 1 (Firmware) Major Version</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Region 1 (Firmware) Minor Version</td>
</tr>
<tr>
<td>Byte 9</td>
<td>Region 1 (Firmware) Unit Version</td>
</tr>
<tr>
<td>Byte 10</td>
<td>Region 1 (Firmware) Dev Version</td>
</tr>
<tr>
<td>Byte 11</td>
<td>Region 2 (Firmware) Status</td>
</tr>
<tr>
<td>Byte 12</td>
<td>Region 2 (Firmware) Major Version</td>
</tr>
<tr>
<td>Byte 13</td>
<td>Region 2 (Firmware) Minor Version</td>
</tr>
<tr>
<td>Byte 14</td>
<td>Region 2 (Firmware) Unit Version</td>
</tr>
</tbody>
</table>

- **Byte 12**: Expander error codes 88-95
- **Byte 13**: Expander error codes 96-103 (error codes 100 to 103 are reserved)
- **Byte 1**: Region 0 (Bootloader) Status
- **Byte 2**: Region 0 (Bootloader) Major Version
- **Byte 3**: Region 0 (Bootloader) Minor Version
- **Byte 4**: Region 0 (Bootloader) Unit Version
- **Byte 5**: Region 0 (Bootloader) Dev Version
- **Byte 6**: Region 1 (Firmware) Status
- **Byte 7**: Region 1 (Firmware) Major Version
- **Byte 8**: Region 1 (Firmware) Minor Version
- **Byte 9**: Region 1 (Firmware) Unit Version
- **Byte 10**: Region 1 (Firmware) Dev Version
- **Byte 11**: Region 2 (Firmware) Status
- **Byte 12**: Region 2 (Firmware) Major Version
- **Byte 13**: Region 2 (Firmware) Minor Version
- **Byte 14**: Region 2 (Firmware) Unit Version
<table>
<thead>
<tr>
<th>Byte</th>
<th>Region</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Region 2 (Firmware) Dev Version</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Region 3 (Configuration) Status</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Region 3 (Configuration) Major Version</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Region 3 (Configuration) Minor Version</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Region 3 (Configuration) Unit Version</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Region 3 (Configuration) Dev Version</td>
<td></td>
</tr>
</tbody>
</table>

OEM Get Sensor Readings

<table>
<thead>
<tr>
<th>0x30</th>
<th>0x2D</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 1</td>
<td>NrSR: number of sensors request</td>
<td>Completion Code</td>
</tr>
<tr>
<td></td>
<td>from oBMC</td>
<td></td>
</tr>
<tr>
<td>Byte 2</td>
<td>sensor number #1</td>
<td>NrSR: number of sensors</td>
</tr>
<tr>
<td></td>
<td>response from Expander</td>
<td></td>
</tr>
<tr>
<td>Byte 3</td>
<td>sensor number #2</td>
<td>Data1 of Sensor #1</td>
</tr>
<tr>
<td>Byte 4</td>
<td>sensor number #3</td>
<td>Data2 of Sensor #1</td>
</tr>
<tr>
<td>Byte 5</td>
<td>sensor number #4</td>
<td>Data3 of Sensor #1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>Data4 of Sensor #1</td>
</tr>
<tr>
<td>Byte N</td>
<td>sensor number #n</td>
<td>Data5 of Sensor #1</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Byte 2+</td>
<td>((n-1)*5)</td>
<td>Data1 of Sensor #n</td>
</tr>
<tr>
<td>Byte 2+ $((n-1)*5)+1$</td>
<td>Data2 of Sensor #n</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Byte 2+ $((n-1)*5) + 2$</td>
<td>Data3 of Sensor #n</td>
<td></td>
</tr>
<tr>
<td>Byte 2+ $((n-1)*5) + 3$</td>
<td>Data4 of Sensor #n</td>
<td></td>
</tr>
<tr>
<td>Byte 2+ $((n-1)*5) + 4$</td>
<td>Data5 of Sensor #n</td>
<td></td>
</tr>
</tbody>
</table>

Get Array Device Status

<table>
<thead>
<tr>
<th>0x30</th>
<th>0xC0</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Byte 0</th>
<th>Completion Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 1</td>
<td>HDD Slot 0</td>
</tr>
<tr>
<td>Byte 2</td>
<td>Array Device Element Status [0] of HDD 0</td>
</tr>
<tr>
<td>Byte 3</td>
<td>Array Device Element Status [1] of HDD 0</td>
</tr>
<tr>
<td>Byte 4</td>
<td>Array Device Element Status [2] of HDD 0</td>
</tr>
<tr>
<td>Byte 5</td>
<td>Array Device Element Status [3] of HDD 0</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Byte N*4 + 1</td>
<td>HDD Slot N (N: Max HDD Slot Number - 1)</td>
</tr>
<tr>
<td>Byte N*4 + 2</td>
<td>Array Device Element Status [0] of HDD N</td>
</tr>
<tr>
<td>Byte N*4 + 3</td>
<td>Array Device Element Status [1] of HDD N</td>
</tr>
<tr>
<td>Byte N*4 + 4</td>
<td>Array Device Element Status [2] of HDD N</td>
</tr>
</tbody>
</table>
Storage

<table>
<thead>
<tr>
<th>Command</th>
<th>Sled cycle</th>
<th>System cycle</th>
<th>Get UIC location</th>
<th>Read FRU Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte N*4 + 5</td>
<td>0x30</td>
<td>0x30</td>
<td>0x30</td>
<td>0x0A</td>
</tr>
<tr>
<td>Array Device Element Status [3] of HDD N</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>0x11</td>
</tr>
<tr>
<td>Sled cycle</td>
<td>0x30</td>
<td>0x30</td>
<td>0x30</td>
<td>0x0A</td>
</tr>
<tr>
<td>System cycle</td>
<td>0x30</td>
<td>0x30</td>
<td>0x30</td>
<td>0x11</td>
</tr>
<tr>
<td>Get UIC location</td>
<td>0x30</td>
<td>0x30</td>
<td>0x30</td>
<td>0x0A</td>
</tr>
<tr>
<td>Read FRU Data</td>
<td>0x30</td>
<td>0x30</td>
<td>0x30</td>
<td>0x0A</td>
</tr>
</tbody>
</table>

Completion Code

- **Byte 0**
- **Byte 1**

UIC location (01h: UIC A; 10h: UIC B)

FRU ID

- **Byte 0**
- **Byte 1**

Offset:

- **Low Byte**
- **High Byte**

Data Length

- **Byte 0**
- **Byte 1**

Data [0]

Data [DataLen - 1]

Data [DataLen + 2 - 1]
oBMC SUPPORT COMMAND

<table>
<thead>
<tr>
<th>Command Name</th>
<th>NetF Code</th>
<th>Expander Request Data</th>
<th>oBMC Response Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>0x04 0x02</td>
<td>Byte 0 0x04</td>
<td>Byte 0 Completion Code</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Byte 1 0x05: BMC_SDR_CHAS SIS (sensor type)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Byte 2 0x00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Byte 3 0x6F: Assert 0xEF: De-assert</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Byte 4 0x00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Byte 5 0xFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Byte 6 0xFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>0x32 0x30</td>
<td>Byte 0 0x00</td>
<td>Byte 0 Completion Code</td>
<td></td>
</tr>
</tbody>
</table>

150
16. EXPANDER FIRMWARE OVERVIEW

The expander has the following functions:

- Sensors readout
- Calculate and report full chassis power
- HDD power control
- HDD LED control
- Generate PWM for fans
- Read and clear PHY error counters
- Read and write FRU IDs
- Report status of GPIOs
- Trigger chassis identify LED as beacon
- Runtime system configuration
- Event report and log
- Staggered spin up of drives

16.1 Drive LEDs

16.1.1 Drive Link LED

The drive Link LED is a blue LED, and is controlled by the SAS expander on the SCC. The LED will be illuminated when the PHY link is established with the HDD. The expander should turn off the LED if the drive is not linked, spun down, etc. In the future, if there is a requirement to blink the LED to indicate activity, the expander can emulate this behavior.
16.1.2 Drive Fault / Identification LED

The drive fault indicator is a yellow LED. This is controlled by the SAS expander on the SCC via I2C GPIO devices located on the DPB. The DPB must implement a circuit to ensure that when the fault LED is illuminated, the drive link/activity LED is not illuminated. The fault LED implements the following patterns:

- Fault bit is set in SES page: on
- Ident bit is set in SES page: blink three seconds on, one second off

To save power, the activity LEDs should only be illuminated when the drawer is pulled out for service. This is possible with the drawer insertion signal that alerts the SCC that the drawer is open.

16.1.3 Drawer Open Thermal Warning Behavior

The Grand Canyon system is required to keep all of the components in the system within the nominal temperatures. Both the expander firmware and BMC need to monitor when the drawer is opened for service, and must provide a visual indication to the user when one or more components in the system is about to hit a thermal trip point. This indication must start a minimum of 30 seconds before the expected trip point is hit.
The behavior should be implemented as shown below in the expander. All the fault LEDs in the first row should illuminate, followed by the second row one second later, and then the third row one second after that continuing until the 6th row is reached. At this point, the behavior should start again from the first step.

If one or more drives has previously been marked faulted (the reason for the drawer was opened) then the fault LED for this drive should be blink at 2Hz continuously during this mode so it is still easily identified.

![Image: Thermal Race Horse Pattern]

Figure 16.1: Thermal Race Horse Pattern

Note: The LEDs should not light up when the drawer is closed to save power. The LEDs light up only after the drawer is opened for servicing the system.

16.2 Power Readings

The expander should provide power consumption of the whole chassis (based on current and voltage reading from the appropriate Hot-Swap-Controller). The expander should present two power readings:

- **Real Time Power**: the expander should read current from HSC at least once every two seconds. The Real-Time Power should be calculated based on the last current reading.
- **Average Power**: The Average Power reading is based on average current from HSC for a configurable time window (from 1 to 255 seconds).

16.3 Runtime System Configurations

The following parameters of the system must be managed by the expander firmware at runtime:

- Current fan speed profile
- Time window of power calculation
- HDD temperature polling interval
16.4 Report Status of GPIOs

The expander firmware uses a few GPIOs to identify the status of the system. The firmware should also report them to the host through a SCSI buffer.

These GPIOs should include:

- SCC type (JBOD, server, etc.)
- SCC location (front, back)
- IOCM insertion
- BMC heartbeat
- Peer SCC insertion
- Peer expander heartbeat
- Chassis pulled out or not

16.5 Even Report and Log

The expander firmware should provide status report and log for the following events:

- Sensor warnings
- I2C bus errors
- HDD errors
- SAS link errors
- Change of GPIO status
- Insert/remove of HDDs

The expander should keep timestamps for the event log. The expander gets timestamp from either BMC (for server configuration only) or from host utility (SCSI buffer write).

16.6 Security Features

Grand Canyon has secure boot with hardware root of trust on the IOC, Expander, SSDs, HDDs, NICs and BMC. To upgrade firmware, signed firmware will need to be used on the IOC, Expander, SSDs, HDDs, NICs and BMC.

17. THERMAL DESIGN SPECIFICATION/REQUIREMENTS

This section outlines the thermal design requirements for the Grand Canyon platform.

To meet thermal reliability requirements, the cooling solution should dissipate heat from the components when the system is operating up to its maximum thermal power.

The final thermal solution of the system should be most optimized and energy efficient under data center environmental conditions with the lowest capital and operating costs. The thermal solution should not allow any overheating issue for any components in the system.
17.1. Data Center Environmental Conditions

This section outlines data center operational condition requirements.

17.1.1 Location of Data Center/Altitude

Maximum altitude is 6,000 feet above sea level. Any variation of air properties or environmental difference due to the high altitude needs to be deliberated into the thermal design.

17.1.2 Cold-Aisle Temperature

Data centers generally maintain cold aisle temperatures between 18°C and 30°C (65°F to 85°F). The mean temperature in the cold aisle is usually 25°C with 3°C standard deviation. The cold aisle temperature in a data center may fluctuate minutely depending on the outside air temperature. Every component must be cooled and must maintain a temperature below its maximum specification temperature in the cold aisle.

17.1.3 Cold-Aisle Pressurization

Data centers generally maintain cold aisle pressure between 0 inches H₂O and 0.005 inches H₂O. The thermal solution of the system should consider the worst operational pressurization possible, which generally is 0 inches H₂O and 0.005 inches H₂O with a single fan (or rotor) failure.

17.1.4 Relative Humidity

Data centers generally maintain a relative humidity between 20% and 90%.

17.2 System Thermal Operational Conditions

17.2.1 Inlet Temperature

The inlet air temperature will vary. The cooling system should cover inlet temperatures 20°C, 25°C, 30°C, and 35°C. Cooling above 30°C is beyond the Meta operational condition but used during validation to demonstrate the thermal reliability and design margin. Any degraded performance is not allowed over the validation range 0°C-35°C.

17.2.2 Pressurization

Except for the condition when one rotor in a server fan fails, the thermal solution should not consider extra airflow from data center cooling fans. If and only if one rotor in a server fan fails, the negative or positive DC pressurization can be considered in the thermal solution in the hot aisle or the cold aisle, respectively.
17.2.3 Fan Redundancy

The Grand Canyon system should support N+1 fan redundancy. Under single fan failure, system performance should not be impacted within normal operating temperature range.

17.2.4 Service Mode

Grand Canyon shall be designed to provide sufficient cooling to support all the required service modes including the replacement of fan, HDD, and other FRUs.

17.2.5 Delta T

The Delta T is the air temperature difference across the system, or the temperature difference between the outlet air temperature and the inlet air temperature. The Delta T for Type 5 Grand Canyon Rack must be greater than 12.2°C (22°F) when running within the data center operational condition. The Delta T for Type 7 Storage Grand Canyon Rack must be greater than 7.8°C (14°F) when running within the data center operational condition.

17.2.6 System Airflow or Volumetric Flow

The unit of airflow (or volumetric flow) used for this spec is cubic feet per minute (CFM). The CFM can be used to determine the thermal expenditure or to calculate the Delta T of a system in approximation. The thermal expenditure is quantified by the metric CFM/W, which is calculated by the following formula:

\[
\text{Thermal Expenditure} = \frac{\text{System airflow}}{\text{Total system power consumption, including fans}} \quad [\text{CFM/W}]
\]

At sea level, the maximum allowable airflow per watt in Type 5 Grand Canyon rack is 0.145 at 30°C inlet temperature under the normal load. For the Type 7 Grand Canyon rack, the maximum allowable airflow per watt is 0.228 at 30°C inlet temperature, sea level. At temperatures above 30°C, the CFM/W requirement, although preferred, will not be enforced.

17.2.7 Thermal Margin

All the critical components shall have minimum 7% thermal margin at 30°C inlet temperature or less and 4% thermal margin over 30°C inlet temperature.

17.2.8 Thermal Sensor

All the critical components shall have the thermal sensors directly monitoring their health. The maximum allowable tolerance of thermal sensors is ±2°C, and +/- 1°C is preferred.
17.3 Grand Canyon Thermal Design Requirements

17.3.1 Fans

Grand Canyon shall use I²C fans which enables smart fan features. The T5 configuration of Grand Canyon shall use four 92mm dual-rotor counter-rotating fans mounted on the back of the system. The T7 configuration of Grand Canyon shall use four 92mm single rotor fans with less airflow and pressure performance to reduce the airflow and power of the system. Fan blade design should also be taken into consideration to reduce the acoustic vibrations that may impact drive performance. Structural vibration of the fans should be optimized to minimize the impact on drive performance. Under normal operating conditions, fan power consumption should not exceed five percent of the total system power.

17.3.2 Cooling Zones

The Grand Canyon system has two cooling zones to the fans. These are referred to as Zone C for the center compute section, and Zone D for the drive areas. There are two fans connected to each zone. The BMC on the IOM only outputs PWM to Zone C, and the SCC controls both Zones C & D. Fans will take the maximum PWM provided by the controllers.

17.3.3 92mm Fan Module

The fan modules are hot-swappable from the rear of the chassis. Each fan module consists of one fan integrated into an easy to service module. Each fan is a dual rotor setup and the fan module as is will be a FRU. In the T7 configuration there may only be a single rotor fan contained in the module. In order to remove the fan, squeeze the two latches on the bottom of
the module inward. Fans shall overhang on rubber material to isolate fan rotational vibrations that affect hard drive performance.

To further isolate the fan module from the system, the interface surfaces with the surface shall have a layer of dampening material. The fan cage should be compliant with all the safety requirements as per UL standards. Fan modules should use louvers as shown in Figure 17.2 to eliminate any potential recirculation during fan servicing and fan failure scenarios. Airflow should control the louvers automatically without any external actuators.

Figure 17.2: Fan louvers

Figure 17.3: Fan Module Front and Back ISO Views
17.3.4 Air Baffles

One of the most important aspects of the thermal design is to keep the drives cool. To assist this, ducting may be implemented to redirect fresh (cold) air from the front of the chassis to help cool the back three rows of drives. Channels would be cut out of the PCB and an air baffle would be installed in the base of the chassis, as shown in Figure 17.5. Alternatively, perforation on the front panel of zone C could be designed (low percentage opening) to increase the airflow through zone D for drives. However, it should still provide adequate air to keep all the components in zone C within their respective thermal specification.
Figure 17.5: Air Baffles covering Barton Springs and SCCs

Figure 17.6: Air Baffles at the bottom tray for fresh air
For Grand Canyon Type 7 Head Node or Type 7 JBOD, a dummy server may be required to limit the air bypass through the empty slot(s).

![Figure 17.7: Dummy Server configurations for Type 7](image)

To make hot servicing of HDDs possible when the drawer is pulled out all the way, there is Mylar added to the bottom of the IOC module tray and transparent Mylar added to the HDD latch to emulate the top and bottom air guides which are normally present when the drawer is fully pushed into the tub.

The transparent Mylar is recommended so that labels can be scanned without removing the drive from the slot. Shown below are renderings of these enhancements to improve the airflow and keep the HDD and the NIC on the IOM well below their max temperature specifications even when the drawer is pulled out.
18. MECHANICAL

This section outlines the mechanical design requirements of the system.

18.1. Overview

18.2. Overall Dimensions

The system shall fit into the OCP rack V2.0 without any modifications and fit into the OCP rack V3.0 with minimum mechanical modifications.

The system dimensions are:

- 537mm wide, 189.5mm tall (4OU height), 940.91mm deep
- 1782mm deep with drawer fully extended
18.3. Rotational Vibration Requirements

In order to reduce rotation vibration from the fan from affecting the HDD normal operation, fan cage and fan tray design shall have:

- **Structural vibration isolation**: Fan is mounted on damping grommets; damping rubber is installed between fan cage, fan tray and chassis (Features shall be included to prevent over-compression of the damping rubber).
- **Acoustic vibration absorption**: Acoustic foams are installed close to the last row HDD to absorb acoustic vibration from fans.
- **Fan vent**: Fan cage vent guard that minimizes turbulence of air flow.
- **Distance of fans from HDD**: Four inches from fan rotor to HDD.
In order to reduce rotational vibration from adjacent HDDs during normal HDD operation, HDD latch and HDD partition design shall have:

- **Structural vibration isolation**: HDD is mounted on damping rubber or double-shot damping materials on HDD latch and HDD partition.

18.4 Drive Plane Board

To enable sliding mechanism of DPB serviceability, DPB design shall satisfy the requirements below:

- The Spool shall be mounted on the DPB through SMT or SMT and screw mount, for the vertical constraint of DPB.
- The DPB guide shall be mounted on both sides of the chassis wall to control the DPB sliding path. Guiding features shall be added for both sliding in and out motion to prevent accidental damage of connectors and components on DPB.
- The DPB sag shall be controlled within 0.85mm by adding plastic structural support to improve its stiffness.
- The DPB shall have adequate support structures under high load connectors (Barton Springs and SCC) to minimize PCBA warpage.

18.5 Drawer Structural Walls

To minimize weight requirements, sheet metal in inner structural walls is cored out to reduce weight. Subcomponents that do not contribute to structural rigidity are replaced with thinner sheet metal or plastic materials.

![Figure 18.3: Drawer Structural Walls](image)

18.6 Slide Rail

Rail design for the drawer type storage shall satisfy the requirements below:

- **Rail type**: Heavy duty telescopic rail
- **Dimension**: 785mm in length, 1642.6mm in full extension
- **Support**: Rail can support drawer weight of 90kg
- **Overhang weight**: Rail can support additional overhang weight of 147kg at the end of the rail
- **Drawer lock**: Drawer has two independent locks activated by a pair pull handles
- **Vibration and shock**: See vibration and shock section
- **Full lock-out and lock-in mechanism to ensure the drawer is properly secured at all times**
- **Shock absorber inclusion on the rail to ensure HDDs do not experience shock up to 20G during pull-out and push-in**

![Figure 18.4: Slide Rail Dimensions](image)

18.7 Bus Bar Power Module & Cable Track

Bus bar power module mechanism shall satisfy the requirements below:

- **Safety**: No Medusa cable pinching points allowed. The mechanism shall not open during accidental hand touch, in case of losing power of the whole system.
- **Serviceability**: The bus bar power module shall be serviceable without removing DPB. Guiding features shall be included to ease its serviceability.
- **Airflow**: There shall be venting holes on both sides of the module to allow airflow to go through the middle channel.

The cable track is present to control the 12V input power cables. This shall be a plastic material with the appropriate length to allow the drawer to fully extend. Cable tracks shall rotate freely and be able to fold and unfold themselves without any resistance.
The drawer handles serve the purpose of latching and unlatching the drawer from the system tub/chassis. The handles shall have no sharp edges, shall be light so as to not add to the chassis total weight, and shall be strong enough to withstand the drawer pull out and insertion forces.

These drawer release handles are not intended for lifting the chassis. Potential security buttons shall be added to mitigate the safety risk of drawer unlatching from the system tub/chassis by accidentally lifting the chassis with the handles.

The handles operate by pushing on the green tabs and rotating the handles inward.
18.9. Rack Release Latching

The rack release latch serves to hold the chassis affixed to the rack. The rack latch shall be designed so that sliding and pushing the chassis all the way into the ORv2 rack clicks it in place and locks the latch without having to press the levers that open the latch. The rack latch shall be capable of holding the entire chassis in place even when the drawer filled with HDDs is pulled out all the way.
The rack latch shall be compatible for both ORv2 and ORv3 rack to minimize mechanical modifications and risk. Although the latch itself shall remain the same between ORv2 and ORV3, its position within the shelf can change depending on the design requirements.

The latch design for Grand Canyon features two pieces: the main latch and an extra spring plate for added retention.

Figure 18.7: Rack Release Latch

Figure 18.8: Rack Release Latch Operation

18.10 Chassis Lift Handles

The chassis features a handle that is able to withstand a minimum of 50kg each. The handle shall be folded away all the time to ensure the system slides freely into the rack. The handle shall be rubberized and green in color (Pantone 375C) for easy handling.
18.11 Drive Retention

Drive retention shall be designed around the form factor outlined in SFF-8301 specification, rather than a specific drive model. The latching mechanism must support all SFF compliant 3.5” HDDs adhering to the 26.1mm max height.
The hard drive latch shall be designed in such a way as to allow for the barcode of an installed hard drive to be scanned without unseating the drive, thereby providing a means to verify the identity of a drive prior to removing it for service.

In addition, the latching feature must be able to lift the drive a minimum of 20mm above the adjacent drive slots and/or any other obstructions to make the removal and insertion of the drive easier. Gaps between two adjacent hard drive latches and gaps between hard drive latches and partitions shall be minimized to prevent air flow leakage.
18.12 UIC and IOC Module

The UIC and IOC have a pinch release lever for the tray lock latch. It shall be made with green plastic for easy identification. Releasing the lever and opening the latch to full open position should almost eject the UIC and IOC PCBA from the chassis connector, so that it is easy to pull them out of the chassis.

While installing the UIC and IOC back in, the card guides should be used to slide the PCBA in and the force from the latch should be used to secure the PCBA to the DPB connector.

No extra force on the UIC and IOC sheet metal front panel is necessary for installation. See Section 8.4 for installation/removal instructions.

![Figure 18.13: IOC Module and UIC](image)

18.13 Storage Controller Card

The SCC PCBA is fitted with one release/install latch. The latch locks in when the card is fully installed and allows for some overtravel to ensure proper wipe. The latch is released using the green plastic pinch release levers. The SCC connectors mating into the DPB are wide and the insertion force is high.

The SCC latches should be able to support the insertion force without deforming or putting any load on the PCBA. There should also be adequate support under the DPB to minimize deformation during insertion.
19. ENVIRONMENTAL AND REGULATIONS

Responsible for successful completion and demonstration of compliance to the FCC Authorization Program Requirements, EU Directive requirements, and NRTL Product Safety requirements specified below for L10 product.

19.1 Regulatory Compliance

- FCC Compliance: The product shall comply with FCC subpart 15 b class A. Characterization documentation and test data shall be provided.
- CE Compliance: The Product shall comply with the EU Directives noted below. Meta shall be provided with a CE Declaration of Conformity and complete technical reports and other documentation files for:
 1. The Low Voltage Directive; 2014/35/EU
 2. The EMC Directive; 2014/30/EU
 3. RoHS 2 Directive; 2011/65/EU, unless there are legal exemptions allowed
 4. REACH Regulation; 1907/2006

19.2 Product Safety Compliance

NRTL Certificate and complete technical report(s) per EN 60950-1, UL 60950-1, CAN/CSA-C22.2 No. 60950-1; Safety of Information Technology Equipment, General Requirements per Edition 2 and Amendment 2.
20. ENVIRONMENTAL REQUIREMENTS

Grand Canyon must meet the following environmental requirements:

- Gaseous Contamination: Severity Level G1 per ANSI/ISA 71.04-1985
- Ambient operating temperature range: 0°C to +35°C
- Operating and storage relative humidity: 10% to 90% (non-condensing)
- Storage temperature range: -40°C to +70°C (long-term storage)
- Transportation temperature range: -55°C to +85°C (short-term storage)
- Operating altitude with no de-rating to 1000m (6000 feet)

20.1. Vibration & Shock

Grand Canyon must meet shock and vibration requirements according to the following IEC specifications: IEC78-2-(*) and IEC721-3-(*) Standard and Levels. The testing requirements are summarized in the table below.

<table>
<thead>
<tr>
<th></th>
<th>OPERATING</th>
<th>NON-OPERATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration</td>
<td>0.4g acceleration, 5 to 500 Hz, 10 sweeps at 1 octave / minute per each of the three axes (one sweep is 5 to 500 to 5 Hz)</td>
<td>1g acceleration, 5 to 500 Hz, 10 sweeps at 1 octave / minute per each of the three axes (one sweep is 5 to 500 to 5 Hz)</td>
</tr>
<tr>
<td>Shock</td>
<td>6g, half-sine 11mS, 5 shocks per each of the three axes</td>
<td>12g, half-sine 11mS, 6 shocks per each of the three axes</td>
</tr>
</tbody>
</table>
20.2 Regulations

20.3 Chassis Labels and Markings
The chassis shall carry the following adhesive bar coded labels in locations that can easily be scanned during integration:

- Vendor P/N, S/N REV (revision would increment for any approved changes)
- Meta P/N (or OCP customer P/N)
- Date Code (industry standard: WEEK/YEAR)
- The assembly shall be marked “THIS SIDE UP,” “TOP SIDE,” “UP,” or other approved marking in bright, large characters in a color to be defined by ODM and Meta (or OCP customer). This printing may be on the PCB itself, or on an installed component such as an air baffle. The label should be clear and easy to read in low light conditions, when viewed from above or below from two feet away, and at an angle of approximately 60 degrees horizontal.

Exact label locations will be agreed upon between the vendor and Meta (or OCP customer).

20.4 Data Center Design Requirements

- Seismic tie downs – GR63
- All casters will swivel
- Push/tilt/angle ramp testing – see OCP spec at www.opencompute.org.
- Rack shall have an entry and exit angle of 15 degrees minimum.
- Rack force (kgw) required to push the rack from a non-moving position along a smooth, flat cement floor shall be less than 5% the total combined weight (kgw) of the rack and IT Gear (note: this is a goal, not a hard requirement).
- The following tests will be performed with the rack loaded at the maximum rated IT load.
 - Roll over a 6mm vertical step with each caster independently at 0.5m/s
 - Transitioning a 1” wide gap in the floor while fully loaded at 0.5m/s
 - Transition a 5-degree ramp
 - Roll a minimum of 800m on a concrete floor at 0.8m/s
- Transportation shock/vibration testing per ASTM D4169-09, Assurance Level II, Mechanized handling, truck, no stacking, distribution cycle 2. Alternative testing may be acceptable, with Meta approval.
- Seismic testing: NEBS GR63 zone 2 with the rack leveling feet lowered. Racks may be ganged together prior to test. NEBS GR63 zone 4 with the rack leveling feet lowered. Racks may be ganged together prior to test.
- Leveling feet requirements: The rack will provide four leveling feet to remove the weight off of the casters once deployed in the data center. The feet shall:
 - Be delivered from the rack supplier in the raised condition and stay in that condition under ASTM D4169-09.
 - Be capable of raising and lowering the feet to their maximum height using only an electric driver from the front and/or rear (side access not allowed).
Be capable of cycling three times up and down under maximum cabinet load without damage to the rack or the leveler.
Be capable of supporting the rack under maximum weight under the GR63 zone 4.
Have a swivel base to prevent the rack from “walking” when the feet are deployed.
Be capable of raising the rack a minimum of 35mm off of the floor.
- Cabinet life: Rack should be designed for an expected life of 10 years under the following environmental conditions:
 - Humidity: 85% max, 42°F dew point minimum
- Cabling and grounding: Cables should be retained out of the path of the FRUs so service events will not damage cables during installation and removal.
- Cables can be added and removed from the cable retention without tools.
- No sharp edges, and burrs must be removed around cable routing areas to prevent damage.

20.5 Mean Time Between Failure (MTBF) Requirements

15.5.1 MTBF Prediction

The board design shall have a minimum calculated MTBF of 300K hours at 95% confidence level at typical usage conditions (25°C ambient temperature).

- Recommended software is Relex
- For non-critical parts, use standard / default number in Relex
- For high failure rate parts, get actual data from each vendor

20.5.2 MTBF Demonstration Test

The board design shall also demonstrate the MTBF requirement above by running test as below:

- At full load for 50% of time, and performing AC cycling test 50% of time
- At 45°C ambient temperature for acceleration
- Total test duration needs to be calculated, discussed with and approved by Meta

20.5 Certifications

The Vendor needs to provide CB reports of the Grand Canyon system at the component level.

21. PRESCRIBED MATERIALS

21.1 Disallowed Components

The following components are not to be used in the design of the system:
- Components disallowed by the European Union's Restriction of Hazardous Substances directive (RoHS 6)
- Trimmers and/or potentiometers
- Dip switches

21.2 Capacitors & Inductors

The following limitations apply to the use of capacitors:

- Only aluminum organic polymer capacitors made by high quality manufacturers are used; they must be rated 105°C.
- All capacitors have a predicted life of at least 50,000 hours at 45°C inlet air temperature, under the worst conditions.
- Tantalum capacitors using manganese dioxide cathodes are forbidden.
- SMT ceramic capacitors with case size >1206 are forbidden (size 1206 are still allowed when installed far from the PCB edge and with a correct orientation that minimizes risk of cracks).
- Ceramic material for SMT capacitors must be X7R or better material (COG or NP0 type are used in critical portions of the design).
- Conditional usage of X5R ceramic material must be based on evaluation of worst-case thermal conditions and upon approval from Meta.
- Only SMT inductors may be used. The use of through hole inductors is disallowed.

21.3 Component Derating

For inductors, capacitors, and FETs, de-rating analysis is based on at least 20% derating.

21.4 Sustainable Materials

Materials and finishes that reduce the life cycle impact of servers should be used where cost and performance are not compromised. This includes the use of non-hexavalent metal finishes, recycled and recyclable base materials and materials made from renewable resources, with associated material certifications.

Meta identified plastic alternatives including polypropylene plus natural fiber (PP+NF) compounds that meet functionality requirements while reducing cradle-to-gate environmental impact when compared to PC/ABS. GreenGranF023T is one acceptable alternate material. JPSECO also offers a PP+NF material that is acceptable; the model number will be available at a later date. It is strongly preferred that such alternatives are identified and used. If a vendor is unable to use this, or a similar alternate material, the vendor will provide a list of materials that were considered and why they were not successfully incorporated.
The supplier shall use Halogen Free (IEC 61249-2-21), arsenic-free (less than 1000 ppm, or 0.1% by weight) and phthalate-free (less than 1000 ppm, or 0.1% by weight) material by default and discuss with Meta and get written approval if there is difficulty with sourcing in L10.

22. SYSTEM FIRMWARE

All Server products must have a completed OSF Tab in the 2021 Supplier Requirements. At this time, this is not required for any other product types. Please check with the OSF leadership for updates.

The completed checklist shall be uploaded and available at:
https://github.com/opencomputeproject/OpenSystemFirmware/[vendor_name]/[product_name]/

23. HARDWARE MANAGEMENT

23.1 Redfish Compliance

All Products shall have a completed Hardware Management Tab in the 2021 Supplier Requirements.

23.2 Source Availability

All Products shall have a completed BMC Tab in the 2021 Supplier Requirements if applicable.

The BMC management source code is available at:
https://github.com/facebook/openbmc

The quick build instruction as follows:
$ git clone -b helium https://github.com/facebook/openbmc.git
$ cd openbmc
$./sync_yocto.sh

$ source openbmc-init-build-env grandcanyon
$ bitbake grandcanyon-image

The build process automatically fetches all necessary packages and builds the complete image. The final OpenBMC image is in
openbmc/build/tmp/deploy/images/grandcanyon/flash-grandcanyon.

The root password will be OpenBmc
24. SECURITY

All products shall have a completed Security Tab in the 2021 Supplier Requirements.

25. REFERENCES (OPTIONAL)

[1] “Title”, publication year, publication journal/conference/standard, volume, pages, link to publication if available

APPENDIX A - REQUIREMENTS FOR IC APPROVAL (to be completed Contributor of Baseline Spec)

List all the requirements in one summary table with links from the sections.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Details</th>
<th>Link to which Section in Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution License Agreement</td>
<td>OCP CLA</td>
<td>Grand Canyon Storage System Specification - v1.0</td>
</tr>
<tr>
<td>Tenets</td>
<td>Openness, Efficiency, Impact, Scale</td>
<td>Grand Canyon Storage System Specification - v1.0</td>
</tr>
<tr>
<td>Supplier available within 120 days</td>
<td>Wiwynn</td>
<td>Grand Canyon Storage System Specification - v1.0</td>
</tr>
<tr>
<td>Will they apply for OCP product recognition?</td>
<td>OCP Accepted™</td>
<td>Grand Canyon Storage System Specification - v1.0</td>
</tr>
</tbody>
</table>