
1

OCP GPU & ACCELERATOR RAS

REQUIREMENTS

3 Author (s):

[Rama Bhimanadhuni, Choudary Maddukuri, Bhushan Mehendale, Venkatesh Ramamurthy Microsoft]

[David Nieto, Sujoy Sen Google]

[Varinder Singh, Pradeep Kumar Shima, Vishal Jain, Linda Wu NVIDIA]

2

Table of Contents
1 Executive Summary ... 4

2 License ... 4

3 About Open Compute Foundation .. 5

4 Introduction ... 6

5 Goals ... 6

5.1 High level requirements to meet the goals: .. 6

5.1.1 Fault-isolation... 6

5.1.2 Hardware Error resiliency Minimizing the probability of a VM/Node crash due to hardware

faults by detecting, signaling, correcting, and often containing errors rather than forcing system resets. . 7

5.1.3 GPU system level crash dumps To meet hardware error RCA and SLA times, require GPU

system level crash dumps and tools to process them. ... 7

5.1.4 GPU System level reset cause identification To identify all the GPU subsystem and reset

causes, identify the telemetry, and limit the reset impact to subcomponent level to reduce the blast

radius Impact. ... 7

5.1.5 GPU screening tools GPU screening tools which can detect early part defects which can be

integrated into manufacturing and production environments. .. 7

5.1.6 Create open-source software that will behave like a compliance check for suppliers and system

integrators to ensure GPU compliance... 7

5.2 GPU RAS System level view .. 8

 ... 8

5.3 Scope of the Specification .. 8

6 Problem Statement ... 9

7 Error Injection .. 11

7.1 Importance of Out of Band Error Injection ... 11

7.2 Error Injection Requirements .. 12

7.3 Error Coverage .. 12

3

7.4 Error Injection Attributes .. 13

7.5 Redfish based RAS Error Injection for GPU Accelerators .. 13

7.6 Device Identification using Redfish device tree .. 17

7.7 Memory Error Injection Details .. 17

7.8 PCIe Error Injection Details .. 19

7.9 Error Injection Secure lock and Unlock Querying unlock Status .. 22

7.9.1 Unlocking Production Grade Hardware & Firmware: .. 22

7.9.2 Locking Mechanism... 23

8 Error reporting Standards ... 23

8.1 Requirements .. 24

8.2 Hardware Error Report Standardization Solutions ... 25

8.3 GPU/Accelerators System level Errors to CPER/Redfish mapping ... 26

8.3.1 Redfish Examples .. 29

9 References ... 30

10 OCP Tenets ... 30

11 Appendices ... 30

11.1 Appendix A - Glossary of Terms .. 30

11.2 Appendix B - Implementation Considerations .. 33

11.2.1 Memory Error Injection Schema ... 33

11.2.2 PCI-e Device Error Injection Schema ... 35

4

1 Executive Summary

With the explosion of AI/ML workloads, adoption of GPUs and Accelerators is rapidly accelerating in

hyperscale Cloud Data Centers. This has created a need for standardizing some critical RAS (Reliability,

Availability and Serviceability) capabilities to provide fast adoption and improved TTM for multiple types of

GPUs and Accelerators. Some of the critical variances seen in the GPU and accelerator landscape include

some gaps in injecting hardware faults and tools, and error reporting. Hyperscalers need the ability to

exercise firmware and Software stacks RAS validation flows with hardware fault injections, to verify hardware

error handling and resiliency flows, identify faulty FRU, RCA telemetry.

This document will talk about RAS requirements, Redfish based standardization approaches towards

hardware error injection and error reporting for different types of GPUs and accelerators. A set of jointly

defined Redfish schemas, and how they benefit from the hardware Error fault Management at hyperscale will

be covered. The idea is to leverage the Open Compute Project to disseminate these requirements to GPU

and accelerator companies along with hyperscalers so that this mutually benefits both and propels our

industry forward.

2 License

Contributions to this Specification are made under the terms and conditions set forth in Open Web Foundation

Modified Contributor License Agreement (“OWF CLA 1.0”) (“Contribution License”) by:

Google, Microsoft, NVIDIA

Usage of this Specification is governed by the terms and conditions set forth in Open Web Foundation

Modified Final Specification Agreement (“OWFa 1.0.2”) (“Specification License”).

You can review the applicable OWFa1.0 Specification License(s) referenced above by the contributors to this

Specification on the OCP website at http://www.opencompute.org/participate/legal-documents/. For actual

executed copies of either agreement, please contact OCP directly.

 Notes:

1. The above license does not apply to the Appendix or Appendices. The information in the Appendix

or Appendices is for reference only and non-normative in nature.

NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED BY OCP "AS IS" AND OCP

EXPRESSLY DISCLAIMS ANY WARRANTIES (EXPRESS, IMPLIED, OR OTHERWISE), INCLUDING IMPLIED

http://www.opencompute.org/participate/legal-documents/

5

WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE,

RELATED TO THE SPECIFICATION. NOTICE IS HEREBY GIVEN, THAT OTHER RIGHTS NOT GRANTED AS SET

FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD PARTIES WHO DID NOT EXECUTE THE

ABOVE LICENSES, MAY BE IMPLICATED BY THE IMPLEMENTATION OF OR COMPLIANCE WITH THIS

SPECIFICATION. OCP IS NOT RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE

REQUIRED IN ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK AS TO IMPLEMENTING OR

OTHERWISE USING THE SPECIFICATION IS ASSUMED BY YOU. IN NO EVENT WILL OCP BE LIABLE TO YOU FOR

ANY MONETARY DAMAGES WITH RESPECT TO ANY CLAIMS RELATED TO, OR ARISING OUT OF YOUR USE OF

THIS SPECIFICATION, INCLUDING BUT NOT LIMITED TO ANY LIABILITY FOR LOST PROFITS OR ANY

CONSEQUENTIAL, INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES OF ANY CHARACTER FROM ANY

CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION, WHETHER BASED ON BREACH OF

CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

3 About Open Compute Foundation

The Open Compute Project Foundation is a 501(c)(6) organization which was founded in 2011 by Facebook,

Intel, and Rackspace. Our mission is to apply the benefits of open source to hardware and rapidly increase

the pace of innovation in, near and around the data center and beyond. The Open Compute Project (OCP) is

a collaborative community focused on redesigning hardware technology to efficiently support the growing

demands on compute infrastructure. For more information about OCP, please visit us at

http://www.opencompute.org.

http://www.opencompute.org/

6

4 Introduction

This document will focus on the Reliability, Availability and Serviceability (RAS) of GPUs in the context of their

usage with hyperscalers. GPU vendors already ship with certain RAS capabilities on the products, but the

methods of inducing or injecting faults to validate RAS scenarios and their detection via telemetry vary

widely. This results in hyper scalers spending NRE and time on adapting RAS solutions from each supplier to

their infrastructure, increasing the time to market. The purpose of this document is to list the goals and

requirements that suppliers of GPUs and accelerators must follow in the future to be compliant with the

basic, non-IP needs of hyperscalers, such that the adoption of their hardware into hyperscales will be faster.

In turn, suppliers will benefit by being able to seamlessly work with multiple hyperscales in the future.

5 Goals

The goals of the RAS solution are:

1. Improve Node Uptime: The goal is to have low Interruption Rate or better MTBF (Mean Time

Between Failures). In terms of system availability, the objective is to reduce the probability of crashes

and its impact on the service due to hardware failures. This is achieved by implementing various RAS

features that allow minimizing the probability of a crash due to hardware faults by detecting,

signaling, correcting, and often containing errors and faults, rather than forcing system resets.

2. Serviceability: Reduce MTTR (Mean Time To Recovery) - Ability to identify faulty components to the

level of a Field Replaceable Unit (FRU) identification.

3. Root Cause Analysis (RCA): SLA time – Ability to provide Hardware & Firmware error telemetry to

RCA issues and meet the SLA requirements as per severity of the issue.

4. Time to Market (TTM): From a hyperscaler perspective, improve the time-to-market for existing and

new accelerator hardware coming from suppliers.

5.1 High level requirements to meet the goals:

5.1.1 Fault-isolation

Define a standardized way of Error reporting and error reporting structures to help FRU identification

and Error cause Identification telemetry.

• Ability to map hardware errors to the FRU.

7

• Report the hardware errors using industry standard specifications like Redfish, IPMI SEL, ACPI APEI

error record formats defined in UEFI CPER (Common Platform Error Record).

1. FRU Isolation for all types of Hardware Failures.

2. Needs structured data that describes hardware errors.

3. Supports filtering and categorization based on error severity and types of errors.

4. Allow entries to contain an unbounded amount of data for deep dive.

• Error Injection Tools: GPU vendors need to provide standardized based hardware error injection

tools which are compatible with cloud infrastructure to verify Error detection, signaling, logging and

containment workflows.

5.1.2 Hardware Error resiliency

Minimizing the probability of a VM/Node crash due to hardware faults by detecting,

signaling, correcting, and often containing errors rather than forcing system resets.

5.1.3 GPU system level crash dumps

To meet hardware error RCA and SLA times, require GPU system level crash dumps and

tools to process them.

5.1.4 GPU System level reset cause identification

To identify all the GPU subsystem and reset causes, identify the telemetry, and limit the

reset impact to subcomponent level to reduce the blast radius Impact.

5.1.5 GPU screening tools

GPU screening tools which can detect early part defects which can be integrated into

manufacturing and production environments.

5.1.6 Create open-source software that will behave like a compliance check for suppliers and

system integrators to ensure GPU compliance.

8

5.2 GPU RAS System level view

5.3 Scope of the Specification

First version of document Scope (Error Injection and Error Reporting)

The scope of this specification is to define error injection capabilities required of a GPU Accelerators. For

now, the scope of this is not applicable for Hardware diagnostics or for that matter manufacturing-related

activities. The purpose of this is to define a set of capabilities that is required by hyperscalers during the

development effort. This implies that suppliers may provide alternate copies of firmware that can be loaded

onto GPU accelerators to demonstrate compliance with error injection capabilities.

However, note that error reporting and mitigation aspects of this specification must apply to production level

hardware and firmware.

The scope, for now, is limited to out of band error injection.

In the future, this specification may be amended to require error injection capabilities on production quality

hardware and firmware from the manufacturer (i.e., components that are running in live, production fleets of

hyperscalers in data centers).

9

6 Problem Statement

Hyperscalers need the ability to adopt newer GPU products from suppliers at a very rapid pace so that they

can innovate on their capabilities and provide these to their downstream customers. Hyperscalers face

challenges with the integration in accelerators, in part due to the SW complexity and the heterogeneous

nature of its implementation.

Hyperscalers need a way to simulate all possible observable faults provided by the accelerator so they can be

handled.

Typical pain points encountered by hyperscalers today have been summarized in the following table. These

pain points lead to increased Time to Market (TTM) for hyperscalers, and the focus of this effort will be

reducing these pain-points:

Issue Sub-Issue Customer

Workload

Impact

Hyperscalers View

GPU not

detectable on

boot

PCIe Issue

Dataplane failure

Bootrom Corruption / Bad

microcode

Interconnect training failures

SLO These issues are normally detected following firmware

updates or during normal operation following. They do not

affect runtime workloads but can be challenging on SLO.

Preventing these to happen en-masse is critical.

Performance

not meeting

Criteria

• Thermal issues/Clocking

issues

• Voltage/noise margin

violations

• Interconnect flakiness

• Memory

instability/Correctable

memory errors

Yes • Need monitoring (in-band/out of band). Simulation of

thermal/clocking alerts.

• We would like deeper data on voltage/noise info.

• These tend to happen during runtime execution, and it is

difficult to detect the threshold for action.

• Driver Regression Partial • Standard regression benchmarks are normally executed

at driver qual.

10

GPU lost Uncontained ECC Errors

(SRAM/DRAM)

Yes Usually, indetectable out of band because microcontrollers

are affected.

Row remap ECC Failures Yes Improve resilience and reduce sending nodes to repair state

PCIe Issue (link state, down,

correctable, uncorrectable)

Yes

Customers may be executing their workloads when this

happens and lose information and data as this situation

typically requires a reset of the sub-system or the whole

system.
Re-Timer Issue

VM Crash Driver Issues Yes Partially detectable by jailing GPU drivers. Open-source is

preferable but often not shared.

GPU lost (as above) Yes Need proper driver support of EDC

Data

Corruption/

Workload

termination

Silent Data Corruptions Yes Undetectable, need out-of-band periodic tests.

ECC Uncontained Yes Sometimes puts the GPU ina bad state, but OS not notified.

Slow Memory Failures

(Column failures)

Yes Pre-flight test passes/ row remapping happens, but it takes a

long time to reach RMA threshold poisoning fleet with repeat

symptoms.

 Power

transients

Can cause Performance, GPU

loss, etc.

Sometimes Not enough tests to monitor micro transients exceeding TDP

due to Boost control. This leads to insufficient power

characterization.

Lack of RCA

telemetry

Issue RCA takes time and not

able to take right actions

Capacity

Issues

In addition to identifying the error, it requires Additional

debug telemetry to identify the RCA for the issue, like Error

register dumps, Crash dumps.

No Issue

Found

Wrong replace of FRUs Reduce the no Issue found category and avoid or reduce

taking wrong actions which leads repeated customer Impact.

11

7 Error Injection

7.1 Importance of Out of Band Error Injection

Typically, Error handling and recovery code-paths on GPUs are not exercised enough in hyperscaler

environments: Hyperscalers cannot rely on the natural fault-occurrence for validation and need something

that can be induced on-demand.

GPU systems have complex topologies with multiple components in their path —switches, re-timers, GPUs,

CPUs, etc. Thus, Intra-node RAS validation is critical. Secondly, fleet level end-to-end error propagation and

containment are critical for hyperscalers to exercise and validate their mitigation/repairability flows.

Today, GPU fault handling is opaque to hyperscalers. When a fault occurs, hyperscalers don’t necessarily have

the ability to know what exact information to collect to analyze the failure.

Even if hyperscalers can collect any information at all, it may not be possible to disambiguate the data such

that they can deduce the remediation information that they need to feed into their repairability workflows.

Furthermore, hyperscalers have custom host OS stacks, and by getting the ability to inject errors, it allows

them to verify their fault-handling mechanisms.

For hyperscalers today, gleaning this fault information from the GPUs to feed into their fault-handling

systems is table stakes—i.e., none of this adds any value to the work hyperscalers do, or offers any incentive

for differentiation. By standardizing these methodologies to inject errors and provide the ability to verify

them allows the hyperscalers to move fast and improve their TTM. Similarly, it allows suppliers to benefit

from consistent interfaces against which they can implement their technology (e.g., re-timer devices,

switches, etc.)

Hyperscalers often deal with GPUs falling off the PCIe bus. And there could potentially be several

contributors to this issue ranging from the GPU core to PCIe devices in the path. It’s important for

hyperscalers to identify the contribution of GPUs to this issue. Error-injection allows hyperscalers to verify

their designs and characterize and identify such failures along with the area of the failure. Many times, GPU

framing errors masquerade themselves as PCIe correctable errors in intermediate switches. Error injections

allow the hyperscalers to test end-end error propagation behavior and understand system/workload impact.

Catastrophic errors encountered by GPUs are sent to the host SW stack but are only visible to the guest.

Consequently, this information becomes unusable for hyperscalers. Such markers are critical for Hyperscalers

12

to consumer via an out of band methodology to enable them to intervene and remediate the issue without

end customer dependency.

7.2 Error Injection Requirements

1. Error injection methods shall provide the following for verification:

a. Error signaling – Error injection should be able to help with verifying error signaling flows,

instead of just the error simulation without signaling flows invoked.

b. Faulty FRU identification

c. Verification of the Error Mitigation

d. Verification of the error flow handling in the platform hardware, firmware, and OS/ drivers.

2. Error injection capability to support different HW error capabilities at the IP Level, SOC Level, and on

the platform level (e.g., HBM, PCIe).

3. Error Injection capability to support Error severity for, Uncorrectable, Correctable and Fatal errors.

4. Error injection methods and interfaces shall be abstracted from silicon specific implementations.

5. Error injection support should provide Secure unlock and lock mechanisms.

6. Errors listed in this specification shall be injected solely using the Redfish schema defined in this

specification. Additionally, this process should be OS-agnostic.

7.3 Error Coverage

Error type Details Priority/Comments

Memory GPU SRAM and GPU DRAM (HBM) Priority

DDR memory is part of Host Motherboard

excluded from here.

PCIe errors • PCIe Switches, PCIe Network devices,

PCIe End point Devices

• PCIe Re-timers

• PCie Link

Priority

PCIe Re-timers require special attention as

Errors are different from the general PCIe

Endpoint devices and PCIe Switches

PCIe Links will have Link Width, Link Speed,

Link down Error considerations.

GPU Core Errors Internal GPU micro controller

exceptions and firmware faults

High Prioirty

GPU Links and

Switches

GPU Interconnects,

Interconnect Switches

Platform Specific

Errors

FPGA Specific Errors, Thermal, USB

VNIC, I2C, I3C

Errors applicable to UBB

13

7.4 Error Injection Attributes

PCIe Errors Attributes

Attributes Details Comments

Device Identification Uses Redfish based URL Specifies the Device where to do Error

injection

Error Severity PCIe Correctable

PCIe Non-Fatal

and PCIe Fatal

Multiple Error severity should be

supported

Error Type Correctable e.g., Bad TLP, Bad DLLP,

Receiver Error, Reply Timeout Ref [1]

Non Fatal e.g., Poisoned TLP received,

Completion Timeout, Unexpected

Completion Ref [1]

Fatal e.g., Malformed TLP, Flow control

Protocol Error, Training Error, Receiver

Overflow. Ref [1]

Multiple Error types for each Error

severity need to be supported

Memory Errors

Attributes Details Comments

Physical Device

Identification

Uses Redfish based URL Specifies the Device where to do Error

injection

Sub Device

Identification

Rank, Column, Row Level Optional

Error Severity Correctable

Uncorrectable

Multiple Error severity should be

supported

Address Memory Address location where to

Inject Error

Optional

Memory Error Poison TBD (Planned for next revision of the Spec)

7.5 Redfish based RAS Error Injection for GPU Accelerators

The below section provides details about the error injection at various hardware component levels. The initial

document focus provides specific resource examples for Memory and PCIe and the same can be expanded to

other resources that the GPU/Accelerator vendors can support as OEM extensions. The errors are injected via

Redfish actions.

The steps below provide a high-level flow of Error Injection

14

1. Device Identification – Using redfish Device Tree

2. Error Injection properties Identification

3. Secure unlock

4. Error Injection for a particular Device

5. Secure Lock

6. Compliance - Verify the Error logs and Error resiliency Actions.

Example steps on how to utilize the error injection using Redfish APIs

1. Do a “GET” on the resource will provide the error injection actions.

a. Memory error injection actions are available in the Memory resource. The URI format shall

follow the patterns defined in the Memory schema.

b. PCIe error injection actions are available in the PCIeDevice resource. The URI format shall

follow the patterns defined in the PCIeDevice schema.

Clients shall traverse to the Processor resource, then do a GET on the Memory or the PCIeDevice

resources in the Links object will find the error injection actions details. Example flows:

1. Do a GET on a Processor resource:

{

 "@odata.id": "/redfish/v1/Systems/{ComputerSystemId}/Processors/{ProcessorId}",

 "Links": {

 "Memory": [{

 "@odata.id": "<Memory ResourceUri>"

 }],

Get & Parse

Device Tree,

Identify Device

Ensure Accelerator

is Unlocked. If not,

unlock it

Lock

Accelerator

Identify Properties

for Error Injection

*Verify error logs,

error resiliency

actions for

compliance.

Inject Error for

Particular Device

15

 "PCIeDevice": {

 "@odata.id": "<PCIeDevice ResourceUri>"

 },

 ...

}

2. Do a GET on a Memory resource:

{

 "@odata.id": "<Memory ResourceUri> ",
 "Actions": {
 "Oem": {
 “OCP”:{
 "#OcpMemory.InjectCorrectableErrors": {
 "target": "<Memory Resource Uri>/Actions/Oem/OcpMemory.InjectCorrectableErrors",
 "@Redfish.ActionInfo": " <Memory
ResourceUri>/Oem/OCP/InjectCorrectableErrorActionInfo"
 },
 “#OcpMemory.InjectUncorrectableErrors": {
 "target": <Memory ResourceUri>/Actions/Oem/OcpMemory.InjectUncorrectableErrors",
 "@Redfish.ActionInfo": " <Memory
ResourceUri>/Oem/OCP/InjectUncorrectableErrorActionInfo"
 }
 }
 }
 }
 ...
}

2. Do a “POST” action will inject the necessary error:

a. POST {ResourceUri}/Oem/Actions/{ResourceType}.{ActionName}

Memory error injection examples:

i. To inject memory poison error (defined in the DMTF standard schema):

HTTP POST {ResourceUri}/Actions/Memory.InjectPersistantPoison

{

 “PhysicalAddress”: “0x1000”

}

ii. To inject memory uncorrectable error (defined in the OCP extension):

HTTP POST {ResourceUri}/Actions/Oem/OcpMemory.InjectUncorrectableError

{

 “PhysicalAddress”: “0x1000”

}

16

3. Do a “GET” on the metric resource (for example, MemoryMetrics) will reflect the new value in the

error counters. For example, the value of “UncorrectableErrorCount” property shall be increased after

a successful uncorrectable error injection.

4. In addition, in some cases you will see a corresponding error log in the LogService resource.

17

7.6 Device Identification using Redfish device tree

Example of a redfish device tree for UBB

RootService

Systems Chassis Managers
Update
Service

Event
Service

BMC

LogServic
es

OAM_X

EnvtMetr
ics

Sensors Power Thermal Controls

UBB

Memory_x

Processor

GPU_X

Processo
rMetrics

EnvtMetr
ics

Memory
Metrics

EnvMetri
cs

Ports

Inventor
y

Subscript
ion

Reports

UBB

Environme
ntMetrics Sensors Power Thermal Controls

MRD

Fabric
Telemetry

Service

Memory

Resource
Resource

Pool
Vendor Specific

names

PCIe
Device

7.7 Memory Error Injection Details

The latest schema (V_1_17_0) added a new property “InjectPersistentPoison (Action)” in support of

memory error injection. In the same lines the document proposes 2 OEM OCP actions,

1)InjectCorrectableError and 2)InjectUncorrectableError. Below section provides the details

Property Name Schema(s) Parameters Type Description

InjectPersistentPoison Memory(Actions) PhysicalAddress, Object Injects poison to the

memory address in the

memory device.

InjectCorrectableError OcpMemory(Actions

)

PhysicalAddress Object Injects correctable errors to

the memory address in the

memory device.

InjectUncorrectableError OcpMemory(Actions

)

PhysicalAddress Object Injects an uncorrectable

error to the memory

18

address in the memory

device.

Note: In future version (0.7), we plan to add additional memory error injection attributes related to
device physical location e..g., row, column, bank and rank.

Property Details

InjectPersistentPoison action defined in Memory schema

 "InjectPersistentPoison": {
 "description": "Injects poison to a persistent memory address in the memory device.",
 "parameters": {
 "PhysicalAddress": {
 "description": "The device physical address as a hex-encoded string.",
 "requiredParameter": true,
 "type": "string"
 }
 },
 "type": "object",
 },

InjectCorrectableError & InjectUncorrectableError actions defined in OcpMemory schema

 "InjectCorrectableError": {
 "description": "Injects a correctable error to a specific persistent memory address in the memory
device. ",
 "parameters": {
 "PhysicalAddress": {
 "description": "The device physical address as a hex-encoded string.",
 "requiredParameter": true,
 "type": "string"
 }
 },

 },
 "InjectUncorrectableError": {
 "description": "Injects an uncorrectable error to a specific persistent memory address in the
memory device. ",
 "parameters": {
 "PhysicalAddress": {
 "description": "The device physical address as a hex-encoded string.",
 "requiredParameter": true,
 "type": "string"
 }
 },
]
 }

Action Details

{

 "@odata.id": "<Memory ResourceUri>”,
 "Actions": {
 "Oem": {

19

 “OCP”:{
 "#OcpMemory.InjectCorrectableErrors": {
 "target": "<Memory ResourceUri>/Actions/Oem/OcpMemory.InjectCorrectableErrors",
 "@Redfish.ActionInfo": "<Memory ResourceUri>/Oem/OCP/InjectCorrectableErrorActionInfo"
 },
 “#OcpMemory.InjectUncorrectableErrors": {
 "target": "<Memory ResourceUri>/Actions/Oem/OcpMemory.InjectUncorrectableErrors",
 "@Redfish.ActionInfo": "<Memory ResourceUri>/Oem/OCP/InjectUncorrectableErrorActionInfo"
 }
 }
 }
 }
 …
}

7.8 PCIe Error Injection Details

PCIeDevice Error Injection actions defined in OcpPCIeDevice schema

The following section details the error injection to PCI-e devices.

Property Name Schema(s) Type Description

InjectCorrectable OcpPCIeDevice(Actions) Object Injects correctable PCIe errors

InjectUncorrectableNonFatal OcpPCIeDevice

(Actions)

Object Injects uncorrectable PCIe non-fatal

errors

InjectUncorrectableFatal OcpPCIeDevice

(Actions)

Object Injects uncorrectable PCIe fatal errors

Property Details

20

 …
“Oem”: {
 "OCP": { [
 " InjectCorrectableError ": {
 "additionalProperties": false,
 "description": "Injects Correctable Error to a specific PCIe device.",
 "parameters": {
 “ErrorType”: {
 “enum”: [
 “ReceiverError”,
 “BadTLP”,
 “BadDLLP”,
 “ReplayTimerTimeout”,
 “ReplayNumRollover”
],
 “type”:”string”
 }
 }
 }
 " InjectUncorrectableNonFatalError ": {
 "additionalProperties": false,
 "description": "Injects Uncorrectable NonFatalError to a specific PCIe device.",
 "parameters": {
 “ErrorType”: {
 “enum”: [
 “PoisonedTLPReceived”,
 “ECRCCheckFailed”,
 “UnsupportedRequest”,
 “CompletionTimeout”,
 “CompleterAbort”,
 “UnexpectedCompletion”
],
 “type”:”string”
 }
 }
 }
 " InjectUncorrectablFatalError ": {
 "additionalProperties": false,
 "description": "Injects UncorrectableFatalError to a specific PCIe device.",
 "parameters": {
 “ErrorType”: {
 “enum”: [
 “TrainingError”,
 “DLLProtocolError”,
 “ReceiverOverflow”,
 “FlowControlProtocolError”,
 “MalformedTLP”
],
 “type”:”string”
 }
 }
 }
]
 }
}

21

Action Details

{
 "@odata.id":"<PCIeDevice ResourceUri>”,
 "Actions": {
 "Oem":{
 "OCP":{
 "#OcpPCIeDevice.InjectCorrectableError": {
 "target": "<PCIeDevice ResourceUri>/Actions/Oem/OcpPCIeDevice.InjectCorrectableError",
 "@Redfish.ActionInfo": "<PCIeDevice ResourceUri>/Oem/OCP/InjectCorrectableErrorActionInfo"
 },
 "#OcpPCIeDevice.InjectUncorrectableNonFatalError": {
 "target": "<PCIeDevice ResourceUri>/Actions/Oem/OcpPCIeDevice.InjectUncorrectableNonFatalError",
 "@Redfish.ActionInfo": "<PCIeDevice ResourceUri>/Oem/OCP/InjectUncorrectableNonFatalErrorActionInfo"
 },
 "#OcpPCIeDevice.InjectUncorrectableFatalError": {
 "target": "<PCIeDevice ResourceUri>/Actions/Oem/OcpPCIeDevice.InjectUncorrectableFatalError",
 "@Redfish.ActionInfo": "<PCIeDevice ResourceUri>/Oem/OCP/InjectUncorrectableFatalErrorActionInfo"
 }
 }
 }
 }
 ...
}

22

7.9 Error Injection Secure lock and Unlock Querying unlock Status

As you can see in Figure 1 In the above diagram, before errors can be injected, the GPU accelerator (discrete

or otherwise) must have the ability to be “unlocked.” The supplier may have locked their components from a

production perspective with security in mind, and this process will unlock the component and ensure it’s

ready for injecting errors. More on locking and unlocking (step #4 in the above diagram) is discussed further

down in this document.

Once the GPU accelerator is ready to receive error injection via Redfish, one can request areas of supported

error injection from the GPU accelerator (#2). Using this information, one can in a loop continue to inject

errors, and receive telemetry confirmation and mitigation of the injected errors (step #3).

Finally, one should be able to “lock” the GPU accelerator and put it back into production mode.

Suppliers must provide hyperscalers with “development” grade or “debug” grade builds/cards of GPU

accelerators. Such hardware and firmware running on it shall be unlocked by default and support the error

injection requirements specified in this documentation.

On “production” grade hardware and firmware running on it which is locked by default, suppliers must

provide a way to unlock the cards to support error injection. The process is outlined below.

7.9.1 Unlocking Production Grade Hardware & Firmware:

As a prerequisite to the unlocking mechanism, the supplier shall ensure that there’s a mechanism to query

the GPU accelerator for its lock status.

GPU/Accelerator

Redfish Interface

Client in

Hyperscaler

Environment

1. Request Token

2. Token, Metadata

4. Signed Payload

5. Unlock Status

3. Token, Metadata Sent to Supplier,

Signed Payload received back.

23

Hyperscaler, through Redfish, requests a token from the accelerator.

1. Hyperscaler requests an unlock token from the accelerator.

2. Hyperscaler receives a device-specific token + metadata (payload) from the accelerator.

3. Through an out of band process, the hyperscalers have the supplier sign the token and get a

payload to send to the accelerator to unlock it.

4. Hyperscaler receives this payload and sends it to the accelerator. What this payload is, is left up

to the supplier. It may be a small unlock token, or an entire firmware drop. But the supplier must

ensure that this payload is only applicable to the hardware it is requested for, and no other GPU

accelerator hardware.

5. The accelerator unlocks and sends status.

7.9.2 Locking Mechanism

The only way to re-lock unlocked production-grade hardware is to re-flash it with production-grade

firmware. This should be done via a standard firmware update process as specified in the FW Update

Specification Note: <Ref to Firmware update specification will be done after OCP spec published.>.

Note that the above unlocking mechanism is expected to be used as a one-off on a case-by-case basis. i.e. it

is not intended to be used in production or in the factory during manufacturing. As such the supplier will

ensure they take reasonable steps to have their unlocking service available 99% (two nines) of the time.

Note: In the next revision (0.7 spec plan) to add specific lock and unlock flows with schema.

8 Error reporting Standards

Hardware Error reporting formats currently used on the servers deployed in large clusters varies across

various CSPs do not have standardized error record formats. The error record format needs to satisfy goals of

identifying the FRU which caused the error and provide extensive information about the error which can help

identify the first level cause of the error. In some cases, full error root cause may require hardware and

software state.

Also, Hardware errors can be reported by different agents like UEFI Firmware, System management controller

(e.g., BMC) and OS based on the Error handling Implementation and type of hardware errors. Having the

same error formats across different error reporting agents will be helpful in terms of Error log Harvesting

tools and Debug.

24

Currently Hardware error reporting uses two existing Standards based on errors to be reported as described

below.

In the first one, IPMI specification-based System Event Logs (SEL) to report hardware errors. But IPMI based

SEL have these limitations.

• SEL error records provide primitive data for reporting Hardware Errors.

• IPMI spec does not cover all types of Hardware errors e.g., lack of support for new technology-based

errors - CPU Interconnect errors (CXL, UPI, GSMI)

• Also, this IPMI specification is not maintained by the industry anymore, so this specification is

becoming absolute.

In place of IPMI specification, DMTF organization has developed a secure and scalable interface specification

called Redfish for the modern datacenter environments. This specification does not directly define hardware

Error formats but provides an infrastructure to define the error records. There is need to define Hardware

error standardization.

The second Industry standard is UEFI specification based Common Platform Error Record (CPER) for hardware

error reporting. Currently UEFI firmware implementations use these CPER records for sharing the hardware

error information to the OS. And the OS also uses CPER records to report hardware errors handled by the

operating system.

Hardware error records access through BMC for Out of Band purposes is very critical for fault diagnostics in

both non bare metal and bare metal use cases. This is one of the widely used mechanisms currently to

harvest error data reliably on scale of systems. Also, BMC based RAS error handling cases are increasing

which requires hardware error record format standardization and APIs to read these records.

The standard for error reporting must satisfy the needs that would enable the faster deployment of

heterogenous hardware and the minimum cost to implement and maintain.

8.1 Requirements

• The Error record format needs to provide complete and accurate information necessary to fully

categorize the error and provide the first level response to the field. This includes identifying the

FRU (Field Replaceable Unit) which caused the error.

https://en.wikipedia.org/wiki/Distributed_Management_Task_Force
https://www.dmtf.org/standards/redfish

25

• The error format must also be structured which simplifies the programming of tools to filter and

categorize the errors.

• Hardware errors can be reported by different agents like UEFI Firmware, Management controllers

(BMC), GPU Drivers/Software and OS based on the Error handling Implementation and type of

hardware errors. Having the same error formats across different error reporting agents will

streamline the tools and Easy Error harvesting.

• In some cases, full error root cause analysis may require hardware and software state, and this will

create architecture specific unbounded blobs of information that will be required with error

messages.

• Also, the extension of categories will keep the standard alive, by allowing new categories for new

technologies or methodologies to be added.

• Finally, it is important to consider the current footprint of tools and APIs available in the industry for

the standard.

8.2 Hardware Error Report Standardization Solutions

The proposed standardization consists of CPER format for the platform error logging with Redfish as the

transport protocol.

• CPER based error Records - As CPER based Hardware errors are already standardized as part of the

UEFI specification adopting this solution for out-of-band methods also gets a wider adoption.

• Redfish schema additions - Allow an individual LogEntry to reference a CPER Record or individual

CPER Section as AdditionalData. Support can be easily provided using “CPER” to the list of

supported formats for attached diagnostic data.

• Redfish “Platform Error” Message Registry – Define a set of messages to cover common hardware

error cases associated with CPER data. The message registry provides a human-readable text

message along with the programmatic means to identify specific errors without requiring text

parsing.

As part of OCP and DMTF collaboration, error reporting standardization implementation details referenced

here: https://www.dmtf.org/sites/default/files/Redfish_LogEntry_for_CPER_WIP.pdf.

https://www.dmtf.org/sites/default/files/Redfish_LogEntry_for_CPER_WIP.pdf

26

8.3 GPU/Accelerators System level Errors to CPER/Redfish mapping

Error Type Reference of Error Record Format Comments

Memory Error Section N.2.5 in UEFI spec Ver 2.9 9.2.2

PCIe Errors Section N.2.7 in UEFI spec Ver 2.9 9.2.4

CXL Protocol Errors Section N.2.13 in UEFI spec Ver 2.9 9.2.6

CXL Component Errors Section N.2.14 in UEFI spec Ver 2.9 9.2.8

Platform Errors Section N.2.3 in UEFI spec Ver 2.9 9.2.10Non-standard Section Body

 9.2.11 9.2.12

Example for CPER for PCIe Errors:

PCIe Advanced Error Reporting
 Corrected
--
 0 - PCIe Error Section (Primary)
 Port Type : [4] Root Port
 Version : 1.1
 Cmd/Status : 0x0010/0x0547
 Device ID :
 VenId:DevId : 0x8086:0x352a
 Class Code: 0x030400
 Function Number: 0x00
 Device Number: 0x01
 Segment: 0x00
 Primary Bus Number: 0x15
Secondary Bus Number: 0x15
 Reserved1: 0x0
 Slot Number: 0x0000
 Reserved2: 0x00
Device Ser # : 0x0000000000000000
Bridge Ctl/Sts: not supplied
Exp Capability: 0x0142
Dev Caps : 0x00008022
Dev Control : 0x2127
Dev Status : 0x0001
Link Caps : 0x017a4105
Link Control : 0x0040
Link Status : 0xf101
Slot Caps : 0x00080000
Slot Control : 0x03c0
Slot Status : 0x0040
Root Caps : 0x0001
Root Control : 0x0008
Root Status : 0x00000000
Dev Caps2 : 0x007317f7

27

Dev Control2 : 0x0049
Dev Status2 : 0x0000
Uncorrectable Error Status : 0x00000000
Uncorrectable Error Mask : 0x00000000
Uncorrectable Error Severity : 0x00062010
Correctable Error Status : 0x00000001
 Receiver Error
Correctable Error Mask : 0x00000000
Caps & Control : 0x000010a0
Header Log : 0x4a000001 0x16000004 0xfd000000 0x00000000
Root Error Command : 0x00000007
Root Error Status : 0x00000001
Correctable Err Source ID : 0x15, 0x01, 0x00
Uncorrectable Err Source ID : 0x00, 0x00, 0x00

28

29

8.3.1 Redfish Examples

LogEntry example - CPER with inline diagnostic data

{

"@odata.type": "#LogEntry.v1_14_0.LogEntry",

"Id": "3",

"Name": "CPER Log Entry with large additional data",

"EntryType": "Event",

"Severity": "Critical",

"Created": "2022-03-07T14:45:00Z",

"Message": “A platform error has occurred.",

"MessageId": "Platform.1.0.PlatformError",

"Links": {

"OriginOfCondition": {

"@odata.id": "/redfish/v1/Systems/1"

}

},

"CPER": {

"NotificationType": "902834BC-AD67-0BAD-BEEF-123456789012"

},

"DiagnosticDataType": "CPER",

30

“DiagnosticData”:

VGhlIGNha2UgaXMgYSBsaWUhCg==ASDEWIhnqn55Qe924MFAFHDFOIAFHEDANHV4582bAIYQN”,

"@odata.id": "/redfish/v1/Systems/1/LogServices/Log1/Entries/4",

}

9 References

• PCI Express Base Specification, Revision 4.0, September 27, 2017.

• Unified Extensible Firmware Interface Specification, version 2.9,

10 OCP Tenets

Openness

This specification has been developed via close and open collaboration between industry partners and

competitors. Interface and Specification will be open to all OCP members.

Efficiency

The Goal of this specification is to make integration of GPUs into Hyperscaler solutions seamless.

Companion compliance tooling will enable high quality products

Impact

This is the first Industry initiative to standardize GPU requirements. It is expected to have significant

impact to quality and TTM for GPU Systems by Hyperscalers. Furthermore, it is expected to be applicable

to Enterprise deployments as well.

Scale

Specification will apply to very large-scale GPU system deployments in Hyperscale Data Centers.

Sustainability

Reduce the component replacements rates through enhanced Availability and Fault Code improvements.

11 Appendices

11.1 Appendix A - Glossary of Terms

https://pcisig.com/specifications/pciexpress/technical_library/pciexpress_whitepaper.pdf
https://uefi.org/specifications

31

Term Definition

Hyperscalers Cloud service providers of the world who value Scaling and rapid time to market

of new accelerator products.

GPU A Graphics Processing Unit. It can be a discrete unit or something like a GPU

card over PCIe.

GPU

Accelerator

A GPU is not necessarily used not as a Graphics processing unit, but as a

processing unit for some unit of work by hyperscalers.

SLO

BMC Firmware Firmware running on the BMC.

BMC-based

error logging

Error logging using firmware running on the BMC, and not involving the

operating system or platform firmware (may use management core firmware)

Containment Error containment prevents corrupted data from being used by applications on

the system and prevents corrupted data from being transmitted over I/O (e.g.,

stored to disk or sent over a network).

In systems that had a bus-based architecture, resets could implement error

containment since the reset was sent to all the devices on the bus at once.

Modern systems do not use buses and the lack of a reset wire means there it

takes a potentially long time for resets to propagate. Modern systems therefore

transmit containment signals via their interconnect fabric (e.g., UPI or

HyperTransport).

See poison and viral, for example containment signals. Stopping an OS with an

interrupt is not sufficient for containment. DMA may continue after the OS is

interrupted and can send corrupted data to I/O.

CSP Cloud Service Provider - The term Cloud Service Provider is intended to be a

broad term for any organization that runs a large fleet of machines and provides

services using that fleet. The use cases in this document are broad and are not

32

strictly limited to organizations that provide cloud services. This proposal also

supports use cases that include server operators that are not cloud providers.

Error Logging Error logging is used very broadly to refer to collecting error data about a

failure. Error logging is the process of latching information about an error in the

chipset, collecting the error data in software and sending the data to tools

where it can be analyzed. When software reads error logs, it often generates a

binary structure such as a Common Platform Error Record (CPER) log that can

be passed to other, higher-level software for analysis.

Error Handling Error handling is where software logs errors, analyzes them, and determines

how to minimize their impact. Error handling software can take actions like

driving RAS features, telling the operating system to stop using resources and

sending messages to get the server repaired.

Fault A fault is something that causes hardware to malfunction. If the hardware

detects the fault, it can log errors that aid in diagnosing the fault and servicing

the hardware.

FIT The Failures In Time (FIT) rate of a device is the number of failures expected in

one billion (109) device-hours of operation. (E.g., 1000 devices for 1 million

hours, or 1 million devices for 1000 hours each, or some other combination.)

FRU (Field

Replaceable

Unit

An FRU is a part that can be changed in the data center to repair a broken

system. Components like DIMMs or PCIe cards are FRUs. A DRAM soldered to a

mainboard would not be considered an FRU; in that case, the mainboard would

be considered an FRU

Hardware

component

A component designed by a vendor. Examples of hardware components

include CPU chips/SoCs, DRAMs and PCIe devices.

Node A platform designed by a vendor integrating multiple components that run an

operating system. These are sometimes also called compute nodes.

33

Platform

firmware

Firmware running on mission-mode cores on the processor. On x86 CPUs,

platform firmware is sometimes called the BIOS or UEFI firmware.

Operating

system (OS)

An operating system running on the processor. The operating system may run

in a virtual machine on a hypervisor or directly on the machine (bare metal).

RAS Features

RAS features mitigate hardware faults. They can be implemented in hardware,

software, or a combination of both.

Some examples of RAS features are memory ECC, DRAM Post Package Repair,

marking pages as bad in the OS and poison recovery. Some RAS features like

Post Package Repair (PPR) need to be triggered. For example, on a memory

controller that supports run-time PPR, software might see a series of corrected

errors, all from the same row address. That software could decide that PPR

would mitigate the fault causing the corrected row errors and could trigger

hardware to do the PPR.

Signaling Error signaling refers to how software is notified that an error has occurred.

11.2 Appendix B - Implementation Considerations

11.2.1 Memory Error Injection Schema

<!-- -->

<!--

##

-->

<!-- # Redfish OEM Schema: OcpMemory v0.7.0

-->

<!-- #

-->

<!-- # Copyright 2023 Open Compute Project.

-->

<!-- # For the full OCP copyright policy, see LICENSE.md

-->

<!--

##

-->

<!-- -->

<edmx:Edmx xmlns:edmx="http://docs.oasis-

open.org/odata/ns/edmx" Version="4.0">

34

<edmx:Reference Uri="http://docs.oasis-

open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Core.

V1.xml">

<edmx:Include Namespace="Org.OData.Core.V1" Alias="OData"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.x

ml">

<edmx:Include Namespace="RedfishExtensions.v1_0_0" Alias="Redfish"/>

<edmx:Include Namespace="Validation.v1_0_0" Alias="Validation"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Resource_v1.xml">

<edmx:Include Namespace="Resource"/>

</edmx:Reference>

<edmx:Reference Uri="http://docs.oasis-

open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Measu

res.V1.xml">

<edmx:Include Namespace="Org.OData.Measures.V1" Alias="Measures"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Memory_v1.xml">

<edmx:Include Namespace="Memory.v1_0_0"/>

</edmx:Reference>

<edmx:DataServices>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="OcpMemory">

<Annotation Term="Redfish.OwningEntity" String="OCP"/>

<Action Name="InjectCorrectableError" IsBound="true">

<Annotation Term="OData.Description" String="Injects a correctable error to a

specific persistent memory address in the memory device."/>

<Annotation Term="OData.LongDescription" String="This action shall inject a

correctable error to a specific persistent memory address in the memory

device."/>

<Parameter Name="Memory" Type="Memory.v1_0_0.Actions"/>

<Parameter Name="PhysicalAddress" Type="Edm.String" Nullable="false">

<Annotation Term="OData.Description" String="The device persistent physical

address in which to perform a correctable error injection as a hex-encoded

string."/>

<Annotation Term="OData.LongDescription" String="This parameter shall contain

the device persistent physical address in which to perform a correctable error

injection as a hex-encoded string."/>

<Annotation Term="Validation.Pattern" String="^0x[0-9a-fA-F]+$"/>

</Parameter>

</Action>

<Action Name="InjectUncorrectableError" IsBound="true">

<Annotation Term="OData.Description" String="Injects an uncorrectable error to

a specific persistent memory address in the memory device."/>

<Annotation Term="OData.LongDescription" String="This action shall inject an

uncorrectable error to a specific persistent memory address in the memory

device."/>

<Parameter Name="Memory" Type="Memory.v1_0_0.Actions"/>

<Parameter Name="PhysicalAddress" Type="Edm.String" Nullable="false">

<Annotation Term="OData.Description" String="The device persistent physical

address in which to perform an uncorrectable error injection as a hex-encoded

string."/>

<Annotation Term="OData.LongDescription" String="This parameter shall contain

the device persistent physical address in which to perform an uncorrectable

error injection as a hex-encoded string."/>

<Annotation Term="Validation.Pattern" String="^0x[0-9a-fA-F]+$"/>

</Parameter>

35

</Action>

</Schema>

<Schema xmlns="http://docs.oasis-

open.org/odata/ns/edm" Namespace="OcpMemory.v0_7_0">

<Annotation Term="Redfish.OwningEntity" String="OCP"/>

<Annotation Term="OData.Description" String="This version was created to add

the InjectCorrectableError and InjectUncorrectableError actions."/>

</Schema>

</edmx:DataServices>

</edmx:Edmx>

11.2.2 PCI-e Device Error Injection Schema

<!-- -->

<!--

##

-->

<!-- # Redfish OEM Schema: OcpPCIeDevice v0.7.0

-->

<!-- #

-->

<!-- # Copyright 2023 Open Compute Project.

-->

<!-- # For the full OCP copyright policy, see LICENSE.md

-->

<!--

##

-->

<!-- -->

<edmx:Edmx xmlns:edmx="http://docs.oasis-

open.org/odata/ns/edmx" Version="4.0">

<edmx:Reference Uri="http://docs.oasis-

open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Core.

V1.xml">

<edmx:Include Namespace="Org.OData.Core.V1" Alias="OData"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.x

ml">

<edmx:Include Namespace="RedfishExtensions.v1_0_0" Alias="Redfish"/>

<edmx:Include Namespace="Validation.v1_0_0" Alias="Validation"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Resource_v1.xml">

<edmx:Include Namespace="Resource"/>

</edmx:Reference>

<edmx:Reference Uri="http://docs.oasis-

open.org/odata/odata/v4.0/errata03/csd01/complete/vocabularies/Org.OData.Measu

res.V1.xml">

<edmx:Include Namespace="Org.OData.Measures.V1" Alias="Measures"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/PCIeDevice_v1.xml">

<edmx:Include Namespace="PCIeDevice.v1_1_0"/>

</edmx:Reference>

<edmx:DataServices>

36

<Schema xmlns="http://docs.oasis-

open.org/odata/ns/edm" Namespace="OcpPCIeDevice">

<Annotation Term="Redfish.OwningEntity" String="OCP"/>

<Action Name="InjectCorrectableError" IsBound="true">

<Annotation Term="OData.Description" String="Injects a correctable PCIe

error."/>

<Annotation Term="OData.LongDescription" String="This action shall inject a

correctable PCIe error in the PCIe device."/>

<Parameter Name="PCIeDevice" Type="PCIeDevice.v1_1_0.Actions"/>

<Parameter Name="ErrorType" Type="OcpPCIeDevice.v0_7_0.CorrectableErrorType" N

ullable="false">

<Annotation Term="OData.Description" String="The error type in which to

perform a correctable PCIe error injection."/>

<Annotation Term="OData.LongDescription" String="This parameter shall contain

the error type in which to perform a correctable PCIe error injection."/>

</Parameter>

</Action>

<Action Name="InjectUncorrectableNonFatalError" IsBound="true">

<Annotation Term="OData.Description" String="Injects a non-fatal,

uncorrectable PCIe error."/>

<Annotation Term="OData.LongDescription" String="This action shall inject a

non-fatal, uncorrectable PCIe error in the PCIe device."/>

<Parameter Name="PCIeDevice" Type="PCIeDevice.v1_1_0.Actions"/>

<Parameter Name="ErrorType" Type="OcpPCIeDevice.v0_7_0.UncorrectableNonFatalEr

rorType" Nullable="false">

<Annotation Term="OData.Description" String="The error type in which to

perform a non-fatal, uncorrectable PCIe error injection."/>

<Annotation Term="OData.LongDescription" String="This parameter shall contain

the error type in which to perform a non-fatal, uncorrectable PCIe error

injection."/>

</Parameter>

</Action>

<Action Name="InjectUncorrectableFatalError" IsBound="true">

<Annotation Term="OData.Description" String="Injects a fatal, uncorrectable

PCIe error."/>

<Annotation Term="OData.LongDescription" String="This action shall inject a

fatal, uncorrectable PCIe error in the PCIe device."/>

<Parameter Name="PCIeDevice" Type="PCIeDevice.v1_1_0.Actions"/>

<Parameter Name="ErrorType" Type="OcpPCIeDevice.v0_7_0.UncorrectableFatalError

Type" Nullable="false">

<Annotation Term="OData.Description" String="The error type in which to

perform a fatal, uncorrectable PCIe error injection."/>

<Annotation Term="OData.LongDescription" String="This parameter shall contain

the error type in which to perform a fatal, uncorrectable PCIe error

injection."/>

</Parameter>

</Action>

</Schema>

<Schema xmlns="http://docs.oasis-

open.org/odata/ns/edm" Namespace="OcpPCIeDevice.v0_7_0">

<Annotation Term="Redfish.OwningEntity" String="OCP"/>

<Annotation Term="OData.Description" String="This version was created to add

the InjectCorrectableError, InjectUncorrectableNonFatalError and

InjectUncorrectableFatalError actions."/>

<EnumType Name="CorrectableErrorType">

<Member Name="ReceiverError">

37

<Annotation Term="OData.Description" String="This value shall indicate a

receiver error."/>

</Member>

<Member Name="BadTLP">

<Annotation Term="OData.Description" String="This value shall indicate a bad

transaction layer packet (TLP) error."/>

</Member>

<Member Name="BadDLLP">

<Annotation Term="OData.Description" String="This value shall indicate a bad

data link layer packet (DLLP) error."/>

</Member>

<Member Name="ReplayTimerTimeout">

<Annotation Term="OData.Description" String="This value shall indicate a

replay timer timeout error."/>

</Member>

<Member Name="ReplayNumRollover">

<Annotation Term="OData.Description" String="This value shall indicate a

REPLAY_NUM rollover error."/>

</Member>

</EnumType>

<EnumType Name="UncorrectableNonFatalErrorType">

<Member Name="PoisonedTLPReceived">

<Annotation Term="OData.Description" String="This value shall indicate a

poisoned transaction layer packet (TLP) received."/>

</Member>

<Member Name="ECRCCheckFailed">

<Annotation Term="OData.Description" String="This value shall indicate an ECRC

check failed."/>

</Member>

<Member Name="UnsupportedRequest">

<Annotation Term="OData.Description" String="This value shall indicate an

unsupported request error."/>

</Member>

<Member Name="CompletionTimeout">

<Annotation Term="OData.Description" String="This value shall indicate a

completion timeout error."/>

</Member>

<Member Name="CompleterAbort">

<Annotation Term="OData.Description" String="This value shall indicate a

completer abort error."/>

</Member>

<Member Name="UnexpectedCompletion">

<Annotation Term="OData.Description" String="This value shall indicate an

unexpected completion error."/>

</Member>

</EnumType>

<EnumType Name="UncorrectableFatalErrorType">

<Member Name="TrainingError">

<Annotation Term="OData.Description" String="This value shall indicate a

training error."/>

</Member>

<Member Name="DLLProtocolError">

<Annotation Term="OData.Description" String="This value shall indicate a data

link layer (DLL) protocol error."/>

</Member>

<Member Name="ReceiverOverflow">

38

<Annotation Term="OData.Description" String="This value shall indicate a

receiver overflow error."/>

</Member>

<Member Name="FlowControlProtocolError">

<Annotation Term="OData.Description" String="This value shall indicate a flow

control protocol error."/>

</Member>

<Member Name="MalformedTLP">

<Annotation Term="OData.Description" String="This value shall indicate a

malformed transaction layer packet (TLP) error."/>

</Member>

</EnumType>

</Schema>

</edmx:DataServices>

</edmx:Edmx>

