
.

Server Component Resilience

Revision 0.3
June 30, 2023

Contributors:
Bharath Parthasarathy and Amber Huffman, Google
Harish Dattatraya Dixit and Tejasvi Chakravarthy, Meta Platforms Inc
Rob Chappell, Microsoft
Vilas Sridharan and Sankar Gurumurthy, AMD
Thiago Macieira, Intel
Reiley Jeyapaul and Lisa Minwell, ARM
Lidia Warnes, NVIDIA

Open Compute Project • Server Component Resilience

Table of Contents
Glossary of Terms 3
1. License (Resilience Workstream) 3

1.1. Open Web Foundation (OWF) CLA 3
1.2. Acknowledgements 4

2. Compliance with OCP Tenets 4
2.1. Openness 4
2.2. Efficiency 5
2.3. Impact 5
2.4. Scale 5
2.5. Sustainability 5

3. Version Table 6
4. Scope 7

4.1. In Scope 7
4.2. Out of Scope 7

5. Definitions 8
5.1 SDC-causing Computing system definition 8

6. Introduction to Information Exchange Specifications 8
Information Exchange Format: 8

7. Test Input Specification 9
8. Test Output Specification 10
9. Part History Specification 12
10. Example of Test Output and Part History 13
11. References (recommended) 16
Appendix A - Checklist for IC approval of this Specification 17

Date: June 30, 2023 Page 2

Open Compute Project • Server Component Resilience

Glossary of Terms
This section provides the glossary used in this specification. Note that it is not organized in
alphabetical order but in sequential order to best understand the terms and definitions as they
flow through the document.

SDC/ SDE = Silent Data Corruption/ Silent Data Error
SLT = System-Level Test
VM = virtual machine
Q-pool = quarantine pool
Fleet = Data Center

1. License (Resilience Workstream)

1.1. Open Web Foundation (OWF) CLA
Contributions to this Specification are made under the terms and conditions set forth in Open
Web Foundation Modified Contributor License Agreement (“OWF CLA 1.0”) (“Contribution
License”) by:

AMD, ARM, Google, Intel, Meta, Microsoft, NVIDIA

Usage of this Specification is governed by the terms and conditions set forth in Open Web
Foundation Modified Final Specification Agreement (“OWFa 1.0.2”) (“Specification
License”).

You can review the applicable OWFa1.0 Specification License(s) referenced above by the
contributors to this Specification on the OCP website at
http://www.opencompute.org/participate/legal-documents/. ​​For actual executed copies of either
agreement, please contact OCP directly.

 Notes:

1) The above license does not apply to the Appendix or Appendices. The information in the
Appendix or Appendices is for reference only and non-normative in nature.

NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED
BY OCP "AS IS" AND OCP EXPRESSLY DISCLAIMS ANY WARRANTIES (EXPRESS,

Date: June 30, 2023 Page 3

http://www.opencompute.org/participate/legal-documents/

Open Compute Project • Server Component Resilience

IMPLIED, OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO
THE SPECIFICATION. NOTICE IS HEREBY GIVEN, THAT OTHER RIGHTS NOT GRANTED
AS SET FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD PARTIES
WHO DID NOT EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE
IMPLEMENTATION OF OR COMPLIANCE WITH THIS SPECIFICATION. OCP IS NOT
RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE REQUIRED IN
ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK AS TO IMPLEMENTING
OR OTHERWISE USING THE SPECIFICATION IS ASSUMED BY YOU. IN NO EVENT WILL
OCP BE LIABLE TO YOU FOR ANY MONETARY DAMAGES WITH RESPECT TO ANY
CLAIMS RELATED TO, OR ARISING OUT OF YOUR USE OF THIS SPECIFICATION,
INCLUDING BUT NOT LIMITED TO ANY LIABILITY FOR LOST PROFITS OR ANY
CONSEQUENTIAL, INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES OF ANY
CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS
SPECIFICATION, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING
NEGLIGENCE), OR OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1.2. Acknowledgements
The Contributors of this Specification would like to acknowledge the following companies for
their feedback:

TBD

2. Compliance with OCP Tenets

2.1. Openness
The SDC specification aims to remove barriers by providing standardized information exchange
formats and an open framework in addressing SDC given the diversity of chips in the data
center. There are three principles that enable openness, collaboration and contribution from the
entire community.

1. Open Frameworks to advance the state of the art in SDC testing, enabling the
community to make contributions on detection methods.

2. Standard format for both input and output to enable open sharing and collaboration.
3. Create communication pathways and transparency to accelerate our collective work

Date: June 30, 2023 Page 4

Open Compute Project • Server Component Resilience

2.2. Efficiency
Contributes to the reduction of test infrastructure costs by providing a standardized information
exchange format and open framework for faster and better SDC detection techniques. Failing to
do it will resort to massive redundancy, which will hurt energy efficiency and performance of
data centers. This Promotes energy efficient testing methodology by implementing optimized
test content and efficient coverage of underlying hardware.

2.3. Impact
We are developing standardized formats and behaviors for sharing information about defective
parts. This will enable researchers to develop better ways to protect data centers and open up
new areas of research in hardware, software, and theory. In the past, experts in these fields
have not been able to collaborate effectively due to limited data sharing. However, this is no
longer sustainable. Standardizing data sharing will allow us to collaborate and create better
solutions for data centers. This will enable us to codesign solutions across the system stack
through a global supply chain, which will achieve the transformative impact that the Open
Compute Project seeks.

2.4. Scale
SDC is an industry-wide issue impacting all platforms deployed threatening business workload
and user data. The reliability of underlying hardware is critical to the future of artificial
intelligence and machine learning. Furthermore, a single entity cannot solve the entirety of the
problem considering how complex of a challenge it is and hence bringing the whole industry and
academic community is key. Our contribution meets this scale tenet by defining standard
information exchange formats and frameworks that enable adoption of new solutions and better
detection methods through a global supply channel, accelerates reliable time-to-market
advantage of technology, and supports ongoing innovation as well as legacy infrastructure.

2.5. Sustainability
Nothing can be sustainable if the fundamental tenet of computing is in jeopardy. So, any effort
towards sustainability must overcome the SDC challenges. By ensuring there is a standardized
format of information exchange and open framework to advance the state of art in SDC
detection and mitigation across a wide variety of hardware, SDC specification can help improve
the reliability and sustainability for future data center infrastructure.

Date: June 30, 2023 Page 5

Open Compute Project • Server Component Resilience

3. Version Table

Date Version # Author Description

June 30,
2023

0.3 See front page Defines Scope and Inputs & Outputs for
a test.

Date: June 30, 2023 Page 6

Open Compute Project • Server Component Resilience

4. Scope

4.1. In Scope
As part of the Open Compute Project (OCP), in October, 2022 we established a Resilience
working group (under the Hardware Management Project) focused on Silent Data Corruption
(SDC) to create a community to address hardware-induced Silent Data Corruption challenges
[Ref]. The scope of this initiative includes CPUs, GPUs, and other hardware accelerators. The
founding members of this working group are AMD, ARM, Google, Intel, Meta, Microsoft, and
NVIDIA.

The high level goals of the working group include:
1. Drive solutions and best practices that prevent and detect SDCs.
2. Create awareness about SDC challenges across the computing community.
3. Partner & engage with the academic community to actively address growing SDC

challenges.

This specification document is intended to standardize test inputs, outputs, metrics, and formats
to allow the industry and academia to collaborate on improving best practices in SDC testing.

The initial version of this document: defines an SDC-causing computing system; and describes
the information needed in a test input specification, test output specification, and part history
specification.

Future versions of the document will include (at least) complete input, output, and part history
format specifications; and a set of metrics used to assess test effectiveness.

4.2. Out of Scope
This version of the document doesn’t cover details on methodology and process for the
research community to access faulty machines for experimentation. This also doesn’t cover
details on metrics and test framework, which will be covered in later versions of this document.

Date: June 30, 2023 Page 7

https://www.opencompute.org/
https://docs.google.com/document/d/1ctx99Qmh-vkMo_dL5vjI12L5GpQhXuZGIMtGgiubicg/edit?resourcekey=0-wpxhrXcLQ1jY2sv-e8xgjw#bookmark=id.yu6t2hjjo0f0

Open Compute Project • Server Component Resilience

5. Definitions

5.1 SDC-causing Computing system definition
A faulty machine is categorized as SDC-causing if we can identify a (bug-free) workload (e.g., a
test created by SDC screening tools or an actual application workload) that produces incorrect
results without any indication from the built-in error detection mechanisms.

6. Introduction to Information Exchange Specifications
Sections 7-8 describe a standardized information exchange to enable collaboration across
academic institutions, hyperscalers as well as silicon vendors and tooling communities.

It is important that the communication around the progress and results have the same
definitions and a standard format across academia and industry. To enable sharing information
using the same format amongst each other, we propose an information exchange format. This
section is the first attempt at enabling standardization around the information shared related to
an SDC causing computing system as defined in the Definitions section.

Information Exchange Format:
This is written with the intent for use in communication with academic institutions. We anticipate
that this will lead to new techniques for overcoming the SDC challenge. Examples of such
techniques include new system-level tests (that may be provided to fleet quarantine pools and
Data Center (fleet) owners can provide standard outputs for the submitted tests) and new
scan-based tests that may be applied to designs supporting fleet wide scan (or may be studied
using simulations).

A standardized format allows for iterations across academic teams and also allows us to
compare effectiveness of various techniques. There would be limitations across quarantine pool
populations between new machines flowing into the pool as well as machines flowing out due to
decommissioning of servers within a fleet.

Sections 7-9 are a list of key fields that describe what needs to be provided with a new test,
what the output report will contain after testing is completed, and useful information about
identified defective parts. The screens or detection methods the academic community develops
will be run on a pool of defective machines. The goal is to establish a library of parts and its
characteristics in a database to enable ease of access with information sharing.

Date: June 30, 2023 Page 8

Open Compute Project • Server Component Resilience

7. Test Input Specification

Key fields:

1. Tool configuration:
a. Required. Indicates which tool or tool suite to use and desired command-line

arguments. Optionally, this may include specific version numbers or even specific
builds (e.g., compiler choice, static vs dynamic linking, etc.). In the case of a suite
of tools or a tool-running tool, all indirect tools need to be specified too.

b. Reason for this field: to provide the entity executing the testing the necessary
information on what to run to ensure proper reproduction.

c. Suggested practice: specific binaries (if acceptable) or source code to be built in
a container.

2. Software environment selection:
a. Indicates what other software must be present in order for the tool to run (usually

dynamically-linked libraries), operating system version and any necessary
OS-level tweaks, such as whether to run with administrator/root privileges,
changes to /sys or /proc/sys (Linux) or in the registry (Windows), etc.

b. Reason for this field: to clarify the necessary permissions the tool will need as
well as to limit variance caused by different ancillary software versions.

c. Suggested practice: virtual machine image, container, or container-building
instructions (e.g., Dockerfile), plus host configuration.

3. Hardware environment selection:
a. Indicates the target desired hardware (see output fields below for recording) as

well as any ancillary hardware that must be present, such as accelerators,
amount of main RAM, and whether access to said hardware must be bare metal,
virtualized, or if it is unimportant. If relevant, firmware versions to be installed.

b. Reason for this field: for the target device, to specify what the desired test is; for
others, to ensure they do not affect the results or to verify whether they do.

c. Suggested practice: node network identifiers, serial numbers, Best Known
Configuration settings.

4. Desired run-time:
a. Indicates the run-time to ensure data collection accumulates sufficient samples.

The input may be as vague or as detailed as necessary. For example, it is not necessary to
specify a specific operating system version and runtime if those aren't known or suspected to
influence the results.

Date: June 30, 2023 Page 9

Open Compute Project • Server Component Resilience

8. Test Output Specification

Key fields:

1. Device type and device architecture:
a. Indicate at a high level what kind of computing device it is. E.g., processor, GPU,

AI hardware, etc.
b. Reason for this field: to provide a higher level device aspect to the research

community. It can also showcase that the SDC problem isn’t confined to specific
kinds of devices.

2. Technology Node:
a. Include technology node information
b. Reason for this field: to provide a higher level overview on the technology node at

which the problem manifests. This can aid to show that the SDC problem isn’t
confined to specific technology nodes.

3. Tests applied during Vendor Manufacturing:
a. Provide high-level information regarding the type of tests (workload) which were

run to determine the component as SDC-causing. This is limited to the tests
executed as part of manufacturing testing.

b. Reason for this field: Many researchers do not have exposure or access into
numerous aspects of testing parameters during manufacturing testing. To
broaden the understanding of manufacturing tests which did not catch these
defective chips will be important for innovative solutions. Moreover, for time t > 0
degradation, the burn-in/stress test information could be important.

i. Scan tests: coverage, test types, voltage, temp (at least qualitatively,
hot/cold, high V, low V), frequency.

ii. Functional/system-level tests: Similar fields as above.
iii. Burn-in and other stress tests

4. Tests applied post-manufacturing:
a. Provide high-level information regarding the type of tests (workload) which were

run to determine the component as SDC-causing, these tests are limited to post
manufacturing stages and in the datacenter. This would represent the tests or
test suites that are run on machines to detect SDC-causing chips or machines in
the datacenter as part of pre-deployment or datacenter acceptance testing. This
field is to include all the failing test names and test time per chip to help with
any correlation.

b. Reason for this info: It will help a lot if the research community understands the
type of tests which are failing and are effective in detecting SDCs. Providing high
level data terms like system-level tests while failing to provide any insights would
not yield research progress. Test times are important for the following reasons:

Date: June 30, 2023 Page 10

Open Compute Project • Server Component Resilience

(a) for test content optimization from manufacturing through in-field testing, (b)
understanding various trade-offs and system-level adaptation, (c) test length
plays a critical role in estimating coverage metrics.

5. Test environment:
a. Provides an overview of the test environment and the related system level

conditions. For example: were these tests run on bare-metal or VM/container
based environments.

b. Associated kernel and firmware versions while the tests were executed if they
could be shared publicly. Any associated device configs which could affect the
environment and could be shared would be included within this field.

6. Time to test failure:
a. Represents the time it took for the test to fail for a particular failure. It could also

represent aggregate metrics, which quantify average test failure time per
architecture per test type. This represents the time from which a test was initiated
on a machine to the time towards first detection of an SDC-causing failure.

7. Reproduction rate across test iterations (minimum 10 iterations):
a. Represents the ability for the test to detect a failure across multiple iterations, a

minimum of 10 is noted here as an example. However, based on the failure mode
and nuance associated with the failure a different iteration denominator could be
used (and explicitly stated) to arrive at a better characterization. The threshold
could be subject to further discussions or modifications based on feedback and
testing efficacy.

8. Error detection latency (if available):
a. It is the time elapsed between creation of an error due to a defect and its

detection by various tests (workloads). It is understandable that tools that are
available today within the industry cannot accurately quantify such a vital metric –
the key to understanding the origins of the SDC problem and eventually creating
solutions.

This field has nuances associated as inherently there will be a delay between the
true origin of defect and the time at which the defect is recognized. This field
quantifies the risk of the delay in detection of SDC-causing defects within a chip.

b. This has direct bearing on coverage, diagnosability (essential for test content
coverage). It is also important for test times and detection efficiency.

c. There are many ways of quantifying error detection latencies.
i. Hardware support (e.g., signature analyzers)
ii. Instrumentation of existing system-level tests with various granularities of

checking.
iii. Fine-grained checking in hardware or in software

Date: June 30, 2023 Page 11

Open Compute Project • Server Component Resilience

iv. Fault-tolerance techniques
9. High level failure info:

a. Represents a high level failure information regarding the test failure. This could
be information related to functional block or the nature of the failure i.e hard crash
on test vs fail-continue on test and other aspects associated with silicon. Include
specific information on the tools that aided in catching the defect.

b.
10. Example log (if tool is open sourced):

a. Example log would be shared if the tool is open sourced or any specific tools log
that a vendor is willing to share. This standardizes test development and enables
automation of log parsing.

9. Part History Specification

Once a defective part is identified, the following key fields describe useful characteristics about
the part that may help test authors understand the sources of failure and how to create better
tests to find them. Because these details can reveal some vendor-proprietary information (e.g.
manufacturing processes, failure analysis methods, failure rates), some vendors may choose to
provide them only under a Non-Disclosure Agreement (NDA).

11. Age at first failure:
Represents the age of the device at which the test failed for the first time. For testing
within the quarantine pool, age may be a misleading factor. [Add a specific definition of
what age means here]

12. T = 0 failure or t > 0 degradation
Age at first failure would not provide a complete answer on the origin and manifestation
of the failure. For example, a T=0 failure might be detected after 1 year (new tests with
coverage, same test detected later due to specific microarchitectural states, etc.).

Additional telemetry and understanding of coverage is required to truly characterize a
failure as degradation at the chip level. [Add a comment on deterministic test] At the test
level, this can represent if more defects are detected with time in fleet and repeated
testing for the same content (or) if the failure manifested and was uncovered because of
a novel test path.

Reason: This information is important for understanding SDC mitigation strategies and
testing costs within a large-scale fleet.

Date: June 30, 2023 Page 12

Open Compute Project • Server Component Resilience

[Add a placeholder in the IEF - all the defined metrics are collected and added to error
reports]

13. Additional Diagnosis details as available from vendors (assuming every chip passed
manufacturing tests and failed system-level tests post-manufacturing)

a. 13a What kind of Failure Analysis was done and results
b. 13b Scan-based diagnosis

i. What scan test detected it together with test conditions?
ii. What were the fault diagnosis results?

1. Timing-independent combinational defect
2. Sequence-dependent (timing-independent) defect
3. Timing-dependent
4. E.g., Stuck-at, bridging, open faults (how many fault candidates)

10. Example of Test Output and Part History

Below is an example to show what information is intended to be shared for test output and part
history. The goal is to build a database of this information on pools of machines referred to as
quarantine pools (or Q-pools) that contain both known-bad and suspected-bad machines. More
information about how Quarantine pools will be managed will be forthcoming in a future revision
of this specification.

Date: June 30, 2023 Page 13

Open Compute Project • Server Component Resilience

Chip # 1 2

1 Device type/architecture CPU CPU

2 Tech node 7nm 14nm

3

Tests applied
during

manufacturing
(Vendor to
provide)

Scan tests (type, coverage, test conditions)
that caught the failure N/A N/A

Functional tests (type, coverage, test
conditions) that caught failure Functional Assembly + C (functional)

Burn-in & other stress tests N/A N/A

4

Tests applied post manufacturing together with test
conditions (SLT)

4a. Test name
4b. Corresponding durations

4c. Test condition

4a. CPUcheck
4b. 10 min

4c. NA

4a. Rainbow
4b. 10 min

4c. NA

4a. X87 test
4b. 1 min

4c. NA

4a. Test <name>
4b. 5 min

4c. NA

5
Test Environment:

Tests run on bare-metal or VM/container based environments Bare-Metal Bare-Metal

6

Time to Test Failure
6a. Tool that triggered failures

6b. corresponding time

6a. Rainbow,
6b. 36 min

6a. X87 Test,
6b. 10s-1 min

7 Reproduction rate of system-level tests and environment 100%@Q-Pool 100%@Q-Pool

8 Error detection latency NA NA

9 High-level failure info Rainbow (Tool specific, Seed# etc) X87 test, instruction specific failure

10 Example log Attach the file Attach the file

Date: June 30, 2023 Page 14

Open Compute Project • Server Component Resilience

11

Age at first failure
11a. SLT tests during the machine life

11b. For Scan based test, include if its the same

11a. T=0 at QA (eg1), SLT - rainbow

11b. T = 18 mon, scan test xx
11a. T=11 mon, first scan of the test

12

T = 0 failure or T>0 degradation
(when fleet scan testing is enabled, this information should be

available)

T= 0 failure,

T>0 NA

T= 0 failure, (failed at first test iteration) -
higher prob. of T=0 failure.

T > 0 NA

13 Additional
Diagnosis
details

(as available
from vendors)

Failure Analysis:
(a) Failure Analysis performed & Results?
(b) Reproduction using scan testing
(c) Test detected with conditions, if any
(d) Fault diagnosis - e.g. timing dependent,
timing independent, stuck-at, sequence
dependant etc.

- Reproduced at vendor,
Test added to MFG,

Instruction failure at FPU stack to normal
stack transfer (marginal timing scenario)

SLT = System-Level Test
VM = virtual machine
Q-pool = quarantine pool

Date: June 30, 2023 Page 15

Open Compute Project • Server Component Resilience

11. References (recommended)
[1] TBD

Date: June 30, 2023 Page 16

Open Compute Project • Server Component Resilience

Appendix A - Checklist for IC approval of this Specification
Complete all the checklist items in the table with links to the section where it is described in this
spec or an external document .

Item Status or Details Link to detailed explanation

Is this contribution entered
into the OCP Contribution
Portal?

Yes If no, please state reason.

Was it approved in the OCP
Contribution Portal?

Yes or No If no, please state reason.

Is there a Supplier(s) that is
building a product based on
this Spec? (Supplier must be
an OCP Solution Provider)

No This is a 0.3 draft for
feedback from the
Community. No products will
be built from this version.

Will Supplier(s) have the
product available for
GENERAL AVAILABILITY
within 120 days?

No

Date: June 30, 2023 Page 17

